13.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x+1,(x≤1)}\\{-x+1,(x>1)}\end{array}}\right.$,則f[f(2)]=(  )
A.3B.2C.1D.0

分析 由題意得f(2)=-2+1=-1,利用函數(shù)性質(zhì)能求出f(f(2))=f(-1),由此能求出結(jié)果.

解答 解:f(2)=-2+1=-1,
f(f(2))=f(-1)=-1+1=0.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,六面體ABCDE中,面DBC⊥面ABC,AE⊥面ABC.
(Ⅰ)求證:AE∥面DBC;
(Ⅱ)若AB⊥BC,BD⊥CD,求證:面ADB⊥面EDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.把[0,1]內(nèi)的均勻隨機(jī)數(shù)實(shí)施變換y=8*x-2可以得到區(qū)間( 。┑木鶆螂S機(jī)數(shù).
A.[6,8]B.[-2,6]C.[0,2]D.[6,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=(x-1)(x+2)(x2+ax+b)的圖象關(guān)于直線x=0對(duì)稱,則f(x)的最小值為( 。
A.-$\frac{25}{4}$B.$\frac{7}{4}$C.-$\frac{9}{4}$D.$\frac{41}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)正三棱柱ABC-A'B'C'中,$AA'=2,AB=2\sqrt{3}$,則該正三棱柱外接球的表面積是20π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長(zhǎng)為a,E是PC的中點(diǎn).
(1)求證:PA∥面BDE;
(2)求證:平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在平行四邊形ABCD中,AB=3,AD=2,$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AQ}$=$\frac{1}{2}$$\overrightarrow{AD}$,若$\overrightarrow{CP}$•$\overrightarrow{CQ}$=12,則∠BAD=( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在△ABC中,點(diǎn)P在BC邊上,∠PAC=60°,PC=2,AP+AC=4.
(Ⅰ) 求∠ACP;
(Ⅱ) 若△APB的面積是$\frac{{3\sqrt{3}}}{2}$,求sin∠BAP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.經(jīng)過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),傾斜角為60°的直線與雙曲線有且只有一個(gè)交點(diǎn),則此雙曲線的離心率為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案