4.在極坐標(biāo)系中,已知直線l的方程為ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,曲線C的方程為ρ=4sinθ,若直線l與曲線C相交于A,B兩點(diǎn),求線段AB的長(zhǎng).

分析 直線l的直角坐標(biāo)方程為x-y+1=0,曲線C的直角方程為x2+(y-2)2=4,由此能求出線段AB的長(zhǎng).

解答 解:∵直線l的方程為ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
即$ρsinθcos\frac{π}{4}$-$ρcosθsin\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,即ρsinθ-ρcosθ=1,
∴直線l的直角坐標(biāo)方程為x-y+1=0,
∵曲線C的方程為ρ=4sinθ,即ρ2=4ρsinθ,
∴曲線C的直角方程為x2+y2=4y,即x2+(y-2)2=4,
∴曲線C是以C(0,2)為原點(diǎn),2為半徑的圓,
∵圓心C(0,2)到直線x-y+1=0的距離d=$\frac{|0-2+1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
∴由勾股定理得線段AB的長(zhǎng):
|AB|=2$\sqrt{{r}^{2}-lpbp3th^{2}}$=2$\sqrt{4-\frac{1}{2}}$=$\sqrt{14}$.

點(diǎn)評(píng) 本題考查直線與圓的弦長(zhǎng)的求法,考查參數(shù)方程、極坐標(biāo)方程、直角坐標(biāo)方程等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)m∈R,復(fù)數(shù)z=2m2-3m-5+(m2-2m-3)i,當(dāng)m=$\frac{5}{2}$時(shí),z為純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an} 的前n項(xiàng)和Sn滿足Sn=2an-1(n∈N*).
(Ⅰ)求數(shù)列{an} 的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn-an} 是首項(xiàng)為3,公差為3的等差數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知曲線C在平面直角坐標(biāo)系xOy下的參數(shù)方程為$\left\{\begin{array}{l}x=1+\sqrt{3}cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線C的普通方程及極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是$ρcos(θ-\frac{π}{6})=3\sqrt{3}$,射線OT:$θ=\frac{π}{3}(ρ>0)$與曲線C交于點(diǎn)A與直線l交于點(diǎn)B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.己知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\-\frac{1}{x},x<0\end{array}\right.$,則$f({f({\frac{1}{4}})})$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知A1,A2為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的兩個(gè)頂點(diǎn),以A1A2為直徑的圓與雙曲線的一條漸近線交于M,N兩點(diǎn),若△A1MN的面積為$\frac{a^2}{2}$,則該雙曲線的離心率是(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{2\sqrt{5}}}{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,在三棱錐A-BCD中,AB⊥平面BCD,∠ACB=45°,∠ADB=30°,∠BCD=120°,CD=40,則AB=(  )
A.10B.20C.30D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)f(x)=x2(x-4)2-a|x-2|+2a有四個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-8,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在△ABC中,M是邊BC的中點(diǎn),cos∠BAM=$\frac{{5\sqrt{7}}}{14}$,tan∠AMC=-$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求角B的大;
(Ⅱ)若角∠BAC=$\frac{π}{6}$,BC邊上的中線AM的長(zhǎng)為$\sqrt{21}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案