分析 直線l的直角坐標(biāo)方程為x-y+1=0,曲線C的直角方程為x2+(y-2)2=4,由此能求出線段AB的長(zhǎng).
解答 解:∵直線l的方程為ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
即$ρsinθcos\frac{π}{4}$-$ρcosθsin\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,即ρsinθ-ρcosθ=1,
∴直線l的直角坐標(biāo)方程為x-y+1=0,
∵曲線C的方程為ρ=4sinθ,即ρ2=4ρsinθ,
∴曲線C的直角方程為x2+y2=4y,即x2+(y-2)2=4,
∴曲線C是以C(0,2)為原點(diǎn),2為半徑的圓,
∵圓心C(0,2)到直線x-y+1=0的距離d=$\frac{|0-2+1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
∴由勾股定理得線段AB的長(zhǎng):
|AB|=2$\sqrt{{r}^{2}-lpbp3th^{2}}$=2$\sqrt{4-\frac{1}{2}}$=$\sqrt{14}$.
點(diǎn)評(píng) 本題考查直線與圓的弦長(zhǎng)的求法,考查參數(shù)方程、極坐標(biāo)方程、直角坐標(biāo)方程等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{{2\sqrt{5}}}{3}$ | D. | $\frac{{2\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 20 | C. | 30 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com