根據(jù)正切函數(shù)的圖象,寫出不等式3+
3
tan2x≥0成立的x的取值范圍
 
考點:正切函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:由不等式3+
3
tan2x≥0,求出tan2x≥-
3
,考查正切函數(shù)的圖象與性質(zhì),求出x的取值范圍.
解答:解:∵不等式3+
3
tan2x≥0,
3
tan2x≥-3,
即tan2x≥-
3
;
π
2
+kπ>2x≥-
π
3
+kπ,k∈Z,
π
4
+
2
>x≥-
π
6
+
2
,k∈Z;
∴x的取值范圍是{x|-
π
6
+
2
≤x<
π
4
+
2
,k∈Z}.
故答案為:{x|-
π
6
+
2
≤x<
π
4
+
2
,k∈Z}.
點評:本題考查了正切函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了不等式的解法與應(yīng)用問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x≥0
y≥0
x+y≤2
,則z=4x+y的最大值為(  )
A、10B、8C、2D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
x-2
x
≤1},B={x|2-x≤1},則∁AB=( 。
A、{x|x<1}
B、{x|0<x<1}
C、{x|0≤x<1}
D、{x|x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<a<1,則函數(shù)f(x)=a|x|-|ogax|的零點的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若字母x,y,z表示的幾何圖形是直線或平面,且命題“若x⊥y,y∥z,則x⊥z”成立,則字母x,y,z在空間表示的下面四中幾何圖形情況中不能是( 。
A、x,y,z都是直線
B、x,y,z都是平面
C、x,z是平面,y是直線
D、x,y是直線,z是平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點P是直線 l:x=-
1
2
上一動點,點 F(
1
2
,0),點Q為PF的中點,點M滿足MQ⊥PF,且 
MP
OF
(λ∈R).過點M作圓 (x-3)2+y2=2的切線,切點分別為S,T,則|ST|的最小值為( 。
A、
2
30
5
B、
30
5
C、
7
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,函數(shù)y=
1
x
、y=x、y=1的圖象和直線x=1將平面直角坐標(biāo)系的第一象限分成八個部分:①②③④⑤⑥⑦⑧.則函數(shù)y=
1
x
的圖象經(jīng)過的部分是(  )
A、④⑦B、④⑧C、③⑦D、③⑧

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x2+y2+(λ-1)x+2λy+λ=0表示圓,則λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+5,當(dāng)x從2變化到4時,函數(shù)的平均變化率是( 。
A、2B、4C、-4D、-2

查看答案和解析>>

同步練習(xí)冊答案