10.已知正四棱錐的體積是48cm3,高為4cm,則該四棱錐的側面積是60cm2

分析 根據體積公式計算底面邊長,再利用勾股定理計算斜高,最后再計算側面積.

解答 解:設正四錐的底面邊長為a,則V=$\frac{1}{3}$×a2×4=48,解得a=6,
∴四棱錐的斜高為$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴四棱錐的側面積S=$\frac{1}{2}×6×5×4$=60.
故答案為:60.

點評 本題考查了棱錐的結構特征,棱錐的側面積計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)滿足:①x∈R;②當x1<x2時,f(x1)≤f(x2).
(1)若f(x)=ax3+1,求a的范圍;
(2)若f(x)是周期函數(shù),求證:f(x)是常值函數(shù);
(3)若g(x)是x∈R上的周期函數(shù),且g(x)>0,且g(x)最大值為M,h(x)=g(x)•f(x),求證:h(x)是周期函數(shù)的充要條件是f(x)是常值函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知棱長為2,各面均為等邊三角形的四面體S-ABC的各頂點都在球O的球面上,則球O的表面積為(  )
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,已知點D為三角形ABC邊BC上一點,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,En(n∈N*)為AC邊上的一列點,滿足$\overrightarrow{{E}_{n}A}$=$\frac{1}{4}$an+1$\overrightarrow{{E}_{n}B}$-(3an+2)$\overrightarrow{{E}_{n}D}$,其中實數(shù)列{an}中,an>0,a1=1,則{an}的通項公式為( 。
A.3•2n-1-1B.2n-1C.3n-2D.2•3n-1-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知A,B,C,D是同一球面上的四個點,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6則該球的表面積為32$\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.觀察下列各式:55=3 125,56=15 625,57=78 125,…,則52017的末四位數(shù)字為( 。
A.3 125B.5 625C.8 125D.0 625

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,正四棱柱ABCD-A1B1C1D1中,O是BD的中點,E是棱CC1上任意一點.
(1)證明:BD⊥A1E;
(2)如果AB=2,$CE=\sqrt{2}$,OE⊥A1E,求AA1的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知定點A(a,0)和定直線x=b(0<a<b),動點P,Q分別在y軸和直線x=b上移動,且滿足AP⊥AQ,側△APQ的面積取得最小值時的點P的坐標為(0,a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=|x+1|-a|x-1|,若f(x)≤a|x+3|,則a的最小值$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案