已知函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且在x=-1處的切線斜率為-5.
(Ⅰ)求b,c的值;
(Ⅱ)求函數(shù)在區(qū)間[-1,2]上的最大值.
【答案】分析:(Ⅰ)因?yàn)楹瘮?shù)f(x)的圖象過(guò)原點(diǎn),所以f(0)=0即c=0,利用導(dǎo)數(shù)的幾何意義,根據(jù)斜率即可求出bc的值
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)求出函數(shù)的極值,再根據(jù)端點(diǎn)求出函數(shù)的端點(diǎn)值,比較即可得出函數(shù)的最值.
解答:解:(Ⅰ)∵函數(shù)f(x)的圖象過(guò)原點(diǎn),
∴f(0)=0即c=0,
∵函數(shù)f(x)在x=-1處的切線斜率為-5即f'(-1)=-5,
∴b=0.
(Ⅱ)x∈[-1,1)時(shí),f(x)=-x3+x2,f'(x)=-3x2+2x,
令f'(x)=0,則,f(-1)=2,f(0)=0,,f(1)=0,
∴fmax(x)=2;x∈[1,2]時(shí),
當(dāng)即a≤2時(shí),fmax(x)=a+2,
當(dāng)即2<a<4時(shí),,
當(dāng)即a≥4時(shí),fmax(x)=2a-1;
當(dāng)a≤2時(shí),
若a+2≥2即a≥0時(shí),fmax(x)=a+2,
若a+2<2即a<0時(shí),fmax(x)=2,
綜上,函數(shù)f(x)在區(qū)間[-1,2]上的最大值為
點(diǎn)評(píng):會(huì)求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義,在要討論a的取值范圍,最后不要忘了綜上所述.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省實(shí)驗(yàn)中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且關(guān)于點(diǎn)(-1,1)成中心對(duì)稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足an>0,a1=1,,求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,試判斷Sn與2的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年廣東省深圳市北大附中南山分校高二(上)期中數(shù)學(xué)試卷1(理科)(解析版) 題型:解答題

已知函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且關(guān)于點(diǎn)(-1,1)成中心對(duì)稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足an>0,a1=1,,求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,試判斷Sn與2的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省廣州市高考數(shù)學(xué)查漏補(bǔ)缺試卷(理科)(解析版) 題型:解答題

已知函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且關(guān)于點(diǎn)(-1,1)成中心對(duì)稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足an>0,a1=1,,求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,試判斷Sn與2的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省高二第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的圖象經(jīng)過(guò)原點(diǎn),取得極大值2。

(1)求函數(shù)的解析式;

(2)若對(duì)任意的,求的最大值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)組合、排列與組合的綜合問(wèn)題專項(xiàng)訓(xùn)練(河北) 題型:解答題

已知函數(shù)的圖象經(jīng)過(guò)原點(diǎn),取得極大值2。

(1)求函數(shù)的解析式;

(2)若對(duì)任意的,求的最大值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案