為了研究“教學方式”對教學質量的影響,某高中數(shù)學老師分別用兩
種不同的教學方式對入學數(shù)學平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).如圖所示莖葉圖為甲、乙兩班(每班均為20人)學生的數(shù)學期末考試成績.
(1)學校規(guī)定:成績不低于75分的為優(yōu)秀.請畫出下面的2×2列聯(lián)表.
(2)判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.
甲班乙班合計
優(yōu)秀
不優(yōu)秀
合計
下面臨界值表僅供參考:
P(x2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
考點:獨立性檢驗的應用
專題:應用題,概率與統(tǒng)計
分析:(1)由所給數(shù)據(jù),結合40,即可補全2×2列聯(lián)表;
(2)根據(jù)所給的列聯(lián)表得到求觀測值所用的數(shù)據(jù),把數(shù)據(jù)代入觀測值公式中,做出觀測值,同所給的臨界值表進行比較,即可得出結論.
解答: 解:(1)
甲班乙班合計
優(yōu)秀61420
不優(yōu)秀14620
合計202040
…(6分)
(2)K2=
40×(6×6-14×14)2
20×20×20×20
=6.4>5.024    …(10分)
因此,我們有97.5%的把握認為成績優(yōu)秀與教學方式有關.…(12分)
點評:本題考查了由莖葉圖求分類變量的列聯(lián)表,及根據(jù)列聯(lián)表計算相關指數(shù)K2的觀測值,考查概率知識的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}.
(1)解不等式2x2+(2-a)x-a>0;
(2)b為何值時,(a-3+b)x2+bx+3≥0的解集為R?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx-
3
cosx+2,向量
a
=(2,-cosα),
b
=(1,cot(α+
π
2
))(0<α<
π
4
)且
a
b
=
7
3

(Ⅰ)求f(x)在區(qū)間[
3
3
]上的最值;
(Ⅱ)求
2cos2α-sin2(α+π)
cosα-sinα
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=alnx+bx2+x的極值點是x=1和x=2.
(1)求a,b的值;
(2)求f(x)在[1,3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2ax-
b
x
+lnx在x=-1,x=
1
2
處取得極值.
(Ⅰ)求a,b的值;
(Ⅱ)x∈[
1
4
,4]時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx在點x0處取得極大值5,其導函數(shù)y=f′(x)的圖象經(jīng)過點(1,0),(2,0),如圖所示.求:
(1)x0的值;
(2)a,b,c的值.
(3)若曲線y=f(x)(0≤x≤2)與y=m有兩個不同的交點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式|x2-x|<
1
2
x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(I)畫出程序框圖:求432的所有正數(shù)約數(shù)(不要求寫算法步驟,只畫程序框圖);
(Ⅱ)事實上,432的所有正數(shù)約數(shù)從小到大依次為:1,2,3,4,6…,432;換個寫法,這些約數(shù)從小到大依次是:20×30,21×30,20×31,22×30,21×31,…,24×33.試求出所有這些約數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題:“?x∈R,x3+2x2-3≥0”的否定是
 

查看答案和解析>>

同步練習冊答案