11.對于函數(shù)f(x),若存在實數(shù)M>0,使得對于定義域內(nèi)的任意的x,使得函數(shù)|f(x)|≤M,則稱函數(shù)f(x)為有界函數(shù),下列函數(shù)是有界函數(shù)的是④⑤⑥
①y=2x+1
②y=-x2+2x
③y=2x-1
④y=lnx(x∈(1,e])
⑤y=2-|x|
⑥$y=\frac{x}{|x|+2}$.

分析 若函數(shù)f(x)為有界函數(shù),則函數(shù)的值域是有界的,逐一分析給定6個函數(shù)的值域,可得答案.

解答 解:若函數(shù)f(x)為有界函數(shù),則函數(shù)的值域是有界的.
①y=2x+1的值域為R,故不是有界函數(shù),
②y=-x2+2x的值域為(-∞,1],故不是有界函數(shù),
③y=2x-1的值域為(-∞,0)∪(0,+∞),故不是有界函數(shù),
④y=lnx(x∈(1,e])的值域為(0,1]為有界函數(shù);
⑤y=2-|x|的值域為(0,1]為有界函數(shù);
⑥$y=\frac{x}{|x|+2}$.的值域為(-1,1)為有界函數(shù);
故答案為:④⑤⑥

點評 本題以新定義“有界函數(shù)”為載體,考查了函數(shù)的值域,正確理解新定義“有界函數(shù)”的含義,是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{2}$x2-5x+4lnx.
(1)求函數(shù)f(x)的定義域并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.函數(shù)f(x)=$\frac{a+lnx}{x}$,若曲線f(x)在點(e,f(e))處的切線與直線e2x-y+e=0垂直(其中e為自然對數(shù)的底數(shù)).
(1)求f(x)的單調(diào)區(qū)間和極值.
(2)求證:當x>1時,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在正三棱柱ABC-A1B1C1中,AB=2,點D、E分別是棱AB、BB1的中點,若DE⊥EC1,則側(cè)棱AA1的長為( 。
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在三棱錐P-ABC中,PA⊥底面ABC,BC⊥AC,∠ABC=30°,AC=1,PB=2$\sqrt{3}$,則PC與平面PAB所成余弦值是( 。
A.$\frac{\sqrt{33}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點分別為F1,F(xiàn)2,點A在橢圓上,AF2⊥x軸,若$\frac{{|A{F_1}|}}{{|A{F_2}|}}=\frac{5}{3}$,則橢圓的離心率等于( 。
A.2B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=ax,g(x)=logax(a>0,a≠1),若$f({\frac{1}{2}})•g({\frac{1}{2}})<0$,那么f(x)與g(x)在同一坐標系內(nèi)的圖象可能是下圖中的( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設G為△ABC的重心,a,b,c分別為角A,B,C的對邊,若35a$\overrightarrow{GA}$+21b$\overrightarrow{GB}$+15c$\overrightarrow{GC}$=$\overrightarrow{0}$,則sinC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.f(x)=kx-lnx在區(qū)間(1,+∞)上是減函數(shù),k的取值范圍是( 。
A.(-∞,0)B.(-∞,0]C.(-∞,1)D.(-∞,1]

查看答案和解析>>

同步練習冊答案