分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),根據(jù)f(1)=4,f′($\frac{1}{3}$)=0,得到關(guān)于a,b的方程組,解出即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.
解答 解:(Ⅰ)∵f′(x)=(ax-1)(x-1),f(1)=4,f′($\frac{1}{3}$)=0,
則$\left\{\begin{array}{l}{\frac{a}{3}-\frac{a+1}{2}+1+b=4}\\{\frac{a}{9}-\frac{a+1}{3}+1=0}\end{array}\right.$,
解得:a=3,b=4,
∴f(x)=x3-2x2+x+4;
(Ⅱ)由(Ⅰ)f′(x)=(ax-1)(x-1),
(1)0<a<1時(shí),$\frac{1}{a}$>1,
令f′(x)>0,解得:x>$\frac{1}{a}$或x<1,
令f′(x)<0,解得:1<x<$\frac{1}{a}$,
故f(x)在(-∞,1)遞增,在(1,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,+∞)遞增,
(2)a=1時(shí),f′(x)≥0,f(x)在R遞增,
(3)a>1時(shí),$\frac{1}{a}$<1,
令f′(x)>0,解得:x<$\frac{1}{a}$或x>1,
令f′(x)<0,解得:$\frac{1}{a}$<x<1,
故f(x)在(-∞,$\frac{1}{a}$)遞增,在($\frac{1}{a}$,1)遞減,在(1,+∞)遞增.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | -2 | 4 | $\sqrt{3}$ |
y | $-2\sqrt{3}$ | 0 | -4 | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1” | |
B. | “若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0” | |
C. | 在△ABC中,A>B是cosA<cosB的必要不充分條件 | |
D. | 若p∧(¬q)為假,p∨(¬q)為真,則p,q同真或同假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com