(2012•陜西三模)已知點A(-1,0)、B(1,0),P(x0,y0)是直線y=x+2上任意一點,以A、B為焦點的橢圓過點P.記橢圓離心率e關(guān)于x0的函數(shù)為e(x0),那么下列結(jié)論正確的是(  )
分析:由題意可得c=1,橢圓離心率e=
1
a
,由橢圓的定義可得PA+PB=2a,a=
PA+PB
2
,再由PA+PB 有最小值而沒有最大值,從而得出結(jié)論.
解答:解:由題意可得c=1,橢圓離心率e=
c
a
=
1
a
.故當(dāng)a取最大值時e取最小,a取最小值時e取最大.
由橢圓的定義可得PA+PB=2a,a=
PA+PB
2

由于PA+PB 有最小值而沒有最大值,即a有最小值而沒有最大值,
故橢圓離心率e 有最大值而沒有最小值,故B正確,且 D不正確.
當(dāng)直線y=x+2和橢圓相交時,這兩個交點到A、B兩點的距離之和相等,
都等于2a,故這兩個交點對應(yīng)的離心率e相同,故A不正確.
由于當(dāng)x0的取值趨于負無窮大時,PA+PB=2a趨于正無窮大;
而當(dāng)當(dāng)x0的取值趨于正無窮大時,PA+PB=2a也趨于正無窮大,故函數(shù)e(x0)不是增函數(shù),故C不正確.
故選B.
點評:本題主要考查橢圓的定義、以及簡單性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•陜西三模)已知f(x)=excosx,則此函數(shù)圖象在點(1,f(1))處的切線的傾斜角為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•陜西三模)已知函數(shù)f(x)=ex-1,g(x)=-x2+4x-3,若存在f(a)=g(b),則實數(shù)b的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•陜西三模)袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2 的小球n個,已知從袋子隨機抽取1個小球,取到標(biāo)號為2的小球的概率是
12

(Ⅰ)求n的值;
(Ⅱ)從袋子中不放回地隨機抽取2個球,記第一次取出的小球標(biāo)號為a,第二次取出的小球標(biāo)號為b.
①記“a+b=2”為事件A,求事件A的概率;
②在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•陜西三模)已知x與y之間的幾組數(shù)據(jù)如下表:
X 0 1 2 3
y 1 3 5 7
則y與x的線性回歸方程
y
=bx+a
必過( 。

查看答案和解析>>

同步練習(xí)冊答案