【題目】如圖,三棱錐A﹣BCD中,△ABC和△BCD所在平面互相垂直,且AB=CD=4,AC=4 ,CD=4 ,∠ACB=45°,E,F(xiàn)分別為MN的中點.
(1)求證:EF∥平面ABD;
(2)求二面角E﹣BF﹣C的正弦值.
【答案】
(1)證明:連接E,F(xiàn),
∵E,F(xiàn)分別為AC,CD的中點,∴EF∥AD,
又AD平面ADB,EF平面ADB,∴EF∥面ABD
(2)解:取BC中點G,過點G作BF的垂線GH,點H為垂足,
∵AB=4,AC=4 ,∠ACB=45°,
∴由AB2=AC2+BC2﹣2ACBCcos45°,得16=32+BC2﹣8BC,即BC=4.
∴AB2+BC2=AC2,即AB⊥BC,
又平面ABC⊥平面BCD,且平面ABC∩平面BCD=BC,
∴AB⊥平面BCD,則EG⊥平面BCD,EG⊥BF,
又GH⊥BF,∴BF⊥平面EGH,則BF⊥EH,即∠EHG為二面角E﹣BF﹣C的平面角.
∵BD=4,BC=4,CD=4 ,∴BF= .
則∠CBF=60°,∴GH=2× .
Rt△EGH中, .
【解析】(1)連接E,F(xiàn),由E,F(xiàn)分別為AC,CD的中點,結(jié)合三角形中位線定理可得EF∥AD,再由線面平行的判定可得EF∥平面ABD;(2)由已知求解三角形可得AB⊥BC,結(jié)合△ABC和△BCD所在平面互相垂直可得AB⊥平面BCD,取BC中點G,過點G作BF的垂線GH,點H為垂足,則∠EHG為二面角E﹣BF﹣C的平面角,求解直角三角形得答案.
【考點精析】掌握直線與平面平行的判定是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.
科目:高中數(shù)學 來源: 題型:
【題目】若圓C1:(x﹣1)2+(y+3)2=1與圓C2:(x﹣a)2+(y﹣b)2=1外離,過直線l:x﹣y﹣1=0上任意一點P分別做圓C1 , C2的切線,切點分別為M,N,且均保持|PM|=|PN|,則a+b=( )
A.﹣2
B.﹣1
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種零件按質(zhì)量標準分為1,2,3,4,5五個等級,現(xiàn)從批該零件中隨機抽取20個,對其等級進行統(tǒng)計分析,得到頻率分布表如下:
等級 | 1 | 2 | 3 | 4 | 5 |
頻率 | 0.05 | m | 0.15 | 0.35 | n |
(1)在抽取的20個零件中,等級為5的恰有2個,求m,n的值;
(2)在(1)的條件下,從等級為3和5的所有零件中,任意抽取2個,求抽取的2個零件等級不相同的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,PA垂直圓所在的平面,C是圓上的點.
(I)求證:平面PAC⊥平面PBC;
(II)若AC=1,PA=1,求圓心O到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 是定義在(1,1)上的奇函數(shù),且f( )=
(1)求實數(shù)m,n的值
(2)用定義證明f(x)在(1,1)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1所示,在邊長為4的菱形ABCD中,∠DAB=60°,點E,F(xiàn)分別是邊CD,CB的中點,EF∩AC=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖2所示五棱錐P﹣ABFED,且AP= ,
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G為BC的中點.
(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com