【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;

(2) 若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與4月份所選5天的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的. 請(qǐng)根據(jù)4月7,4月15日與4月21日這三天的數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸方程,并判定所得的線(xiàn)性回歸方程是否可靠?

參考公式:

參考數(shù)據(jù):

【答案】(1) ;(2)見(jiàn)解析.

【解析】試題分析:(1)用列舉法列出所有的基本事件,分析可得mn均不小于25”的情況個(gè)數(shù),用古典概型公式,計(jì)算即可得答案;(2根據(jù)所給的數(shù)據(jù),先做出 的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點(diǎn),根據(jù)最小二乘法求出線(xiàn)性回歸方程的系數(shù),寫(xiě)出線(xiàn)性回歸方程,再根據(jù)估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,就認(rèn)為得到的線(xiàn)性回歸方程是可靠的,則根據(jù)求得的結(jié)果和所給的數(shù)據(jù)進(jìn)行比較,即可得到所求的方程是可靠的.

試題解析(1)所有的基本事件為(23,25)(23,30)(23,26),(23,16)(25,30)(25,26)(25,16),(30,26),(30,16),(26,16),共10個(gè).

設(shè)m,n均不小于25”為事件A,則事件A包含的基本事件為(25,30)(25,26)(30,26),共3個(gè),故由古典概型概率公式得P(A).

(2) 由題意得 .

,

關(guān)于的線(xiàn)性回歸方程,

當(dāng)時(shí), ;

當(dāng)時(shí),

當(dāng)時(shí), ;

當(dāng)時(shí), ;

當(dāng)時(shí), .

∴所得到的線(xiàn)性回歸方程是可靠的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求f(2),f(x);

(2)證明:函數(shù)f(x)在[1,17]上為增函數(shù);

(3)試求函數(shù)f(x)在[1,17]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的離心率為 ,右焦點(diǎn)為F,點(diǎn)B(0,1)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn) 的直線(xiàn)交橢圓C于M,N兩點(diǎn),交直線(xiàn)x=2于點(diǎn)P,設(shè) ,求證:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線(xiàn) 與橢圓相交于 兩點(diǎn)(, 不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂點(diǎn).求證:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不等式x2﹣2ax+a+2≤0的解集為M,若M[1,4],求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】全國(guó)大學(xué)生機(jī)器人大賽是由共青團(tuán)中央,全國(guó)學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國(guó)最具影響力的機(jī)器人項(xiàng)目,是全球獨(dú)創(chuàng)的機(jī)器人競(jìng)技平臺(tái).全國(guó)大學(xué)生機(jī)器人大賽比拼的是參賽選手們的能力,堅(jiān)持和態(tài)度,展現(xiàn)的是個(gè)人實(shí)力以及整個(gè)團(tuán)隊(duì)的力量.2015賽季共吸引全國(guó)240余支機(jī)器人戰(zhàn)隊(duì)踴躍報(bào)名,這些參賽戰(zhàn)隊(duì)來(lái)自全國(guó)六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國(guó)科大,西安交大等眾多國(guó)內(nèi)頂尖高校,經(jīng)過(guò)嚴(yán)格篩選,最終由111支機(jī)器人戰(zhàn)隊(duì)參與到2015年全國(guó)大學(xué)生機(jī)器人大賽的激烈角逐之中,某大學(xué)共有“機(jī)器人”興趣團(tuán)隊(duì)1000個(gè),大一、大二、大三、大四分別有100,200,300,400個(gè),為挑選優(yōu)秀團(tuán)隊(duì),現(xiàn)用分層抽樣的方法,從以上團(tuán)隊(duì)中抽取20個(gè)團(tuán)隊(duì).

(1)應(yīng)從大三抽取多少個(gè)團(tuán)隊(duì)?

(2)將20個(gè)團(tuán)隊(duì)分為甲、乙兩組,每組10個(gè)團(tuán)隊(duì),進(jìn)行理論和實(shí)踐操作考試(共150分),甲、乙兩組的分?jǐn)?shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強(qiáng)化訓(xùn)練,備戰(zhàn)機(jī)器人大賽.從統(tǒng)計(jì)學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐ABCD中,AB⊥平面BCDCD⊥BD .

1)求證:CD⊥平面ABD;

2)若ABBDCD1,MAD中點(diǎn),求三棱錐AMBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)M到坐標(biāo)原點(diǎn)的距離和它到直線(xiàn)l:x=﹣m(m>0)的距離之比是一個(gè)常數(shù)
(Ⅰ)求點(diǎn)M的軌跡;
(Ⅱ)若m=1時(shí)得到的曲線(xiàn)是C,將曲線(xiàn)C向左平移一個(gè)單位長(zhǎng)度后得到曲線(xiàn)E,過(guò)點(diǎn)P(﹣2,0)的直線(xiàn)l1與曲線(xiàn)E交于不同的兩點(diǎn)A(x1 , y1),B(x2 , y2),過(guò)F(1,0)的直線(xiàn)AF、BF分別交曲線(xiàn)E于點(diǎn)D、Q,設(shè) , ,α、β∈R,求α+β的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.命題“若x2=9,則x=±3”的否命題為“若x2=9,則x≠±3”
B.若命題P:?x0∈R, ,則命題?P:?x∈R,
C.設(shè) 是兩個(gè)非零向量,則“ 是“ 夾角為鈍角”的必要不充分條件
D.若命題P: ,則¬P:

查看答案和解析>>

同步練習(xí)冊(cè)答案