分析 設(shè)這四個為a,b,c,d,由等差數(shù)列和等比數(shù)列的性質(zhì)列出方程,由此能求出這四個數(shù).
解答 解:∵有四個數(shù),其中前三個數(shù)成等比數(shù)列,其積為216,后三個數(shù)又成等差數(shù)列,其和為12,
∴設(shè)這四個為a,b,c,d,
則$\left\{\begin{array}{l}{^{2}=ac}\\{abc=216}\\{2c=b+d}\\{b+c+d=12}\end{array}\right.$,解得a=9,b=6,c=4,d=2.
∴這四個數(shù)依次為9,6,4,2.
點(diǎn)評 本題考查四個數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列和等差數(shù)列的性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\sqrt{{x}^{2}}$與y=($\sqrt{x}$)2 | B. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | ||
C. | y=x-1(x∈R)與y=x-1(x∈N) | D. | y=1+$\frac{1}{x}$與y=1+$\frac{1}{t}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,3) | B. | (-∞,-3)∪(3,+∞) | C. | (-3,0)∪(3,+∞) | D. | (-∞,-3)∪(0,+3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com