直線l:cosθ•x+sinθ•y=1(θ∈R)與圓C:x2+y2=1的位置關(guān)系是(  )
分析:利用點到直線的距離公式求出圓心到已知直線的距離d,比較d與r的大小即可得到直線與圓的位置關(guān)系.
解答:解:由題設(shè)知圓心(0,0)到直線的距離
d=
|-1|
cos2θ+sin2θ
=1,
∵圓的半徑r=1,∴d=r
∴直線xcosθ+ysinθ-2=0與圓x2+y2=1相切
故選B.
點評:本題考查直線與圓的位置關(guān)系,以及平方關(guān)系的應(yīng)用,求得圓心到已知直線的距離d,比較d與r的大小是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題有(I)、(II)、(III)三個選作題,每題7分,請考生任選兩題作答,滿分14分.如果多做,則按所做的前兩題記分,作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知a∈R,矩陣P=
02
-10
,Q=
01
a0
,若矩陣PQ對應(yīng)的變換把直線l1:x-y+4=0變?yōu)橹本l2:x+y+4=0,求實數(shù)a的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,求圓C:ρ=2上的點P到直線l:ρ(cosθ+
3
sinθ)=6
的距離的最小值.
(3)選修4-5:不等式選講
已知實數(shù)x,y滿足x2+4y2=a(a>0),且x+y的最大值為5,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-4:坐標(biāo)系與參數(shù)方程)將曲線C1
x=
2
t2+1
y=
2t
t2+1
,化為普通方程,并求C1被直線l:ρcos(θ+
π
3
)=1
所截得的線段長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化三模)直線l:ρcosθ=t(常數(shù)t>0)與圓
x=cosθ
y=1+sinθ
(θ為參數(shù))相切,則t=
±1
±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)如圖,AB是圓O的直徑,P在AB的延長線上,PD切圓O于點C.已知圓O半徑為y=x-1(1≤x≤2),OP=2,則PC=
 
,∠ACD的大小為
 

(2)在極坐標(biāo)系中,點(2,
π2
)關(guān)于直線l:ρcosθ=1的對稱點的一個極坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊答案