已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;   (2)若恒成立,求實(shí)數(shù)k的取值范圍;

(3)證明:  

 

【答案】

(1)當(dāng)時(shí),函數(shù)的遞增區(qū)間為,;當(dāng)時(shí),函數(shù)的遞增區(qū)間為,遞減區(qū)間為; (2) (3)證明如下

【解析】

試題分析:解:(1)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013070813503585233271/SYS201307081351276209445281_DA.files/image003.png">, 

當(dāng)時(shí),函數(shù)的遞增區(qū)間為,

當(dāng)時(shí),函數(shù)的遞增區(qū)間為,遞減區(qū)間為

(2)由得,,

,則,

∴當(dāng)時(shí),函數(shù)遞增;當(dāng)時(shí),函數(shù)遞減。

∴當(dāng)時(shí)函數(shù)取得最大值為1,∴,

(3)由(1)可知若,當(dāng)時(shí)有 

,即,即有 (x>1),  

,則,,

考點(diǎn):導(dǎo)數(shù)的應(yīng)用

點(diǎn)評(píng):導(dǎo)數(shù)常應(yīng)用于求曲線的切線方程、求函數(shù)的最值與單調(diào)區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)已知函數(shù).(1) 求函數(shù)的最小正周期,并寫(xiě)出函數(shù)圖象的對(duì)稱軸方程;(2) 若,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省濟(jì)南市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若,在區(qū)間恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江省寧波市高一下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),

(1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)當(dāng)時(shí),求函數(shù)的最值及相應(yīng)的.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省濟(jì)寧市高二5月質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),判斷的大小,并說(shuō)明理由;

(3)求證:當(dāng)時(shí),關(guān)于的方程:在區(qū)間上總有兩個(gè)不同的解.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省汕頭市高三畢業(yè)班教學(xué)質(zhì)量檢測(cè)文科數(shù)學(xué)(含解析) 題型:解答題

(本題滿分14分)

    已知函數(shù)

    (1)求的最小值;

(2)若對(duì)所有都有,求實(shí)數(shù)的取值范圍.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案