12.計(jì)算($\root{3}{2}$)6-$\frac{7}{5}$×($\frac{49}{25}$)${\;}^{-\frac{1}{2}}$-lg$\frac{1}{10}$=4.

分析 根據(jù)指數(shù)冪的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:($\root{3}{2}$)6-$\frac{7}{5}$×($\frac{49}{25}$)${\;}^{-\frac{1}{2}}$-lg$\frac{1}{10}$=${2}^{\frac{1}{3}×6}$-$\frac{7}{5}$×$\frac{5}{7}$+1=4-1+1=4,
故答案為:4.

點(diǎn)評(píng) 本題考查了指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆江蘇南通市如東縣等高三10月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

給出定義在上的兩個(gè)函數(shù),.

(1)若處取最值.求的值;

(2)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(3)試確定函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若f(x)=$\left\{\begin{array}{l}{f(x-5),x>0}\\{{2}^{x+2}{+∫}_{0}^{\frac{π}{6}}cos3tdt,x≤0}\end{array}\right.$,則f(2017)=( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x2-x+ce-2x(c∈R).
(1)若f(x)是在定義域內(nèi)的增函數(shù),求c的取值范圍;
(2)若函數(shù)F(x)=f(x)+f'(x)-$\frac{5}{2}$(其中f'(x)為f(x)的導(dǎo)函數(shù))存在三個(gè)零點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列各組對(duì)象不能構(gòu)成一個(gè)集合的是( 。
A.不超過(guò)20的非負(fù)實(shí)數(shù)
B.方程x2-9=0在實(shí)數(shù)范圍內(nèi)的解
C.$\sqrt{3}$的近似值的全體
D.臨川十中2016年在校身高超過(guò)170厘米的同學(xué)的全體

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,且滿足f(0)=f($\frac{π}{3}$)則下列說(shuō)法正確的是( 。
A.f(x)的最小正周期為2πB.f(x)在[0,$\frac{π}{4}$]上是增函數(shù)
C.f(x)的圖象關(guān)于直線x=$\frac{5}{6}$π對(duì)稱D.f($\frac{2π}{3}$)=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.定義在R上的函數(shù)f(x)滿足(x-1)f′(x)≤0,且f(-x)=f(2+x),當(dāng)|x1-1|<|x2-1|時(shí),有( 。
A.f(2-x1)≥f(2-x2B.f(2-x1)=f(2-x2C.f(2-x1)>f(2-x2D.f(2-x1)≤f(2-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=f(x)是R上的偶函數(shù),且在(-∞,0]上是增函數(shù),若f(a)≤f(2),則實(shí)數(shù)a的取值范圍是(  )
A.a≤2B.a≥-2C.a≤-2或 a≥2D.-2≤a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.計(jì)算:(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}}$-(-2016)0-($\frac{27}{8}$)${\;}^{-\frac{2}{3}}}$+($\frac{3}{2}$)-2

查看答案和解析>>

同步練習(xí)冊(cè)答案