已知不等式|x-m|<1成立的一個充分非必要條件是
1
3
<x<
1
2
,則實數(shù)m的取值范圍是( 。
A、[-
4
3
,
1
2
]
B、[-
1
2
,
4
3
]
C、(-∞,-
1
2
)
D、[
4
3
,+∞)
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)不等式的性質(zhì)以及充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:不等式|x-m|<1等價為m-1<x<m+1,
∵不等式|x-m|<1成立的一個充分非必要條件是
1
3
<x<
1
2
,
m-1≤
1
3
m+1≥
1
2
,即
m≤
4
3
m≥-
1
2
,
解得-
1
2
≤m≤
4
3
,
故選:B
點評:本題主要考查充分條件和必要條件的應用,根據(jù)不等式之間的關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=|3x-x3|在區(qū)間[-2,2]上的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,一個地區(qū)分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一顏色,現(xiàn)有4種顏色可供選擇,則不同的著方法共有( 。┓N.
A、36B、24C、72D、48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,則a2的值為( 。
A、12B、9C、6D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2a,AB=a,F(xiàn)為CD的中點.
(1)求證:AF⊥平面CDE;
(2)求異面直線AC,BE所成角的余弦值;
(3)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式ax2-bx+c>0的解集為(-
1
2
,2),對于a,b,c有以下結(jié)論:(1)a>0;(2)b>0;(3)c>0;(4)a+b+c>0;(5)a-b+c>0,其中正確討論的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=3
,
a
b
=-12
,則向量
b
在向量
a
方向上的投影的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

考察下列三個命題,在“橫線”處都缺少一個條件,補上這個條件使其構(gòu)成真命題(其中l(wèi)?m為直線,α?β為平面),則此條件為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某企業(yè)準備招聘一批大學生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進行測試.在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為
8
15

(Ⅰ)求該小組中女生的人數(shù);
(Ⅱ)假設此項專業(yè)技能測試對該小組的學生而言,每個女生通過的概率均為
3
4
,每個男生通過的概率均為
1
2
,現(xiàn)對該小組中男生甲、男生乙和女生丙3個人進行測試,求這3人中通過測試的人數(shù)不少于2人的概率.

查看答案和解析>>

同步練習冊答案