p:ax2+by2=c為雙曲線,q:ab<0,則p是q的( 。
A、充分非必要條件
B、必要非充分條件
C、既不充分也不必要條件
D、充要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:p:ax2+by2=c為雙曲線,化為
x2
c
a
+
y2
c
b
=1
,可得
c
a
c
b
<0,于是ab<0,c≠0.即可判斷出.
解答: 解:p:ax2+by2=c為雙曲線,化為
x2
c
a
+
y2
c
b
=1
,則
c
a
c
b
<0,∴ab<0,c≠0.
因此p是q的既不必要不充分條件.
故選:C.
點(diǎn)評:本題考查了雙曲線的標(biāo)準(zhǔn)方程、充分必要的判定,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

0
(cosx+ex)dx=(  )
A、1-e
B、1+e
C、-e
D、πe-π-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A′B′C′(底面為正三角形,側(cè)棱垂直于底面)的正視圖和側(cè)視圖如圖所示.設(shè)△ABC、△A′B′C′的中心為O,O′,現(xiàn)將此三棱柱繞直線OO′旋轉(zhuǎn).射線OA旋轉(zhuǎn)所成的角為x弧度(x可取任一實(shí)數(shù),逆時(shí)針為正角,順時(shí)針為負(fù)角).對應(yīng)的俯視圖的面積為S(x),則S(x)的最小正周期和值域分別為( 。
A、
3
,[4,8]
B、
3
,[4
3
,8]
C、
π
3
,[4,8]
D、
π
3
,[4
3
,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,-2,-3,4},B={x|x=|n|,n∈A},則A∩B=( 。
A、{1,-2}
B、{-2,-3}
C、{2,3}
D、{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)雙曲線x2-y2=1的焦點(diǎn)坐標(biāo)為( 。
A、(±1,0)
B、(0,±1)
C、(±
2
,0)
D、(0,±
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R,若p:x<1且y<1,q:x+y≥2.則p是¬q的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin
θ
2
+cos
θ
2
=
1
2
,則cos2θ=( 。
A、-
3
4
B、
1
8
C、-
1
8
D、
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的程序框圖中輸入n=3,結(jié)果會(huì)輸出( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我市某校某數(shù)學(xué)老師這學(xué)期分別用m,n兩種不同的教學(xué)方式試驗(yàn)高一甲、乙兩個(gè)班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同,勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各20名的數(shù)學(xué)期末考試成績,并作出莖葉圖如圖所示.
(Ⅰ)依莖葉圖判斷哪個(gè)班的平均分高?
(Ⅱ)現(xiàn)從甲班所抽數(shù)學(xué)成績不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),用ξ表示抽到成績?yōu)?6分的人數(shù),求ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)學(xué)校規(guī)定:成績不低于85分的為優(yōu)秀,作出分類變量成績與教學(xué)方式的2×2列聯(lián)表,并判斷“能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)?”
下面臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊答案