設(shè)數(shù)列{
n
(n+1)!
}前n項(xiàng)和為Sn,則S1=
1
2
1
2
,S2=
5
6
5
6
,S3=
23
24
23
24
,S4=
119
120
119
120
,并由此猜想出Sn=
(n+1)!-1
(n+1)!
(n+1)!-1
(n+1)!
分析:由已知,直接計(jì)算各項(xiàng),并進(jìn)行歸納推理即可.
解答:解:則S1=
1
2!
=
1
2

S2=
1
2
+
2
3!
=
5
6

S3=
5
6
+
3
4!
=
23
24

S4=
23
24
+
4
5!
=
119
120

由此猜想出Sn=
(n+1)!-1
(n+1)!

故答案為:
1
2
 
5
6
 
23
24
 
119
120
 
(n+1)!-1
(n+1)!
點(diǎn)評(píng):本題考查歸納推理,數(shù)字規(guī)律探求的能力.實(shí)際上可看作給出一個(gè)數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的通項(xiàng)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱(chēng)數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫(xiě)出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+6=an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇同步題 題型:解答題

設(shè)數(shù)列{an}是公差為d的等差數(shù)列,其前n項(xiàng)和為Sn
(1)已知a1=1,d=2,
(i)求當(dāng)n∈N*時(shí),的最小值;
(ii)當(dāng)n∈N*時(shí),求證:;
(2)是否存在實(shí)數(shù)a1,使得對(duì)任意正整數(shù)n,關(guān)于m的不等式am≥n的最小正整數(shù)解為3n﹣2?若存在,則求a1的取值范圍;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市長(zhǎng)寧區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱(chēng)數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫(xiě)出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+6=an,n∈N*
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)模擬試卷3(文科)(解析版) 題型:解答題

設(shè)數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱(chēng)數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫(xiě)出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+6=an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案