已知三次函數(shù),
(1)若函數(shù)過點(diǎn)且在點(diǎn)處的切線方程是,求函數(shù)的解析式;
(2)在(1)的條件下,若對(duì)于區(qū)間上任意兩個(gè)自變量的值,都有,求實(shí)數(shù)的最小值。
解:(1),故
(2)t的最小值是20
由在點(diǎn)處的切線方程是可得出,k==0;
列式求解;恒成立,則即最高點(diǎn)與最低點(diǎn)縱標(biāo)差即可,轉(zhuǎn)化為求函數(shù)在上的問題
解:(1)函數(shù)過點(diǎn),------------1分
,函數(shù)在點(diǎn)處的切線方程是,,-----------------------3分
解得,故--------------------5分
(2)由(1)知,令解得,-------------6分
,
在區(qū)間,-----------------8分
對(duì)于區(qū)間上任意兩個(gè)自變量的值,
都有,---------------------9分
,所以t的最小值是20
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分9分)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理)(14分)設(shè)函數(shù),其中
(I)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
(II)求函數(shù)的極值點(diǎn);
(III)證明對(duì)任意的正整數(shù)n,不等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)是否存在實(shí)數(shù)、使得關(guān)于的不等式在(1,)上恒成立,若存在,求出的取值范圍,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)
(1)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;
(2) 若函數(shù)處取得極小值是,求的值,并說明在區(qū)間內(nèi)函數(shù)
的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;       
(2)若,試求函數(shù)在此區(qū)間上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分)已知:函數(shù) ,在區(qū)間上有最大值4,最小值1,設(shè)函數(shù)
(1)求的值及函數(shù)的解析式;
(2)若不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍;
(3)如果關(guān)于的方程有三個(gè)相異的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的單調(diào)遞增區(qū)間是             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)為常數(shù))在定義域上是增函數(shù),則實(shí)數(shù)的取值范圍是                 

查看答案和解析>>

同步練習(xí)冊(cè)答案