5.將圓的六個等分點分成相同的兩組,它們每組三個點構成的兩個正三角形除去內部的六條線段后可以形成一個正六角星.如圖所示的正六角星的中心為點O,其中x,y分別為點O到兩個頂點的向量.若將點O到正六角星12個頂點的向量都寫成ax+by的形式,則a+b的最大值為5.

分析 根據題意,畫出圖形,結合圖形,得出求a+b的最大值時﹐只需考慮圖中6個頂點的向量即可,分別求出即得結論.

解答 解:欲求a+b的最大值﹐只需考慮右圖中6個頂點的向量即可,討論如下﹔
(1)∵$\overrightarrow{OA}$═$\overrightarrow{x}$﹐∴(a,b)=(1,0);
(2)∵$\overrightarrow{OB}=\overrightarrow{OF}+\overrightarrow{FB}=\overrightarrow{y}+3\overrightarrow{x}$,所以(a,b)=(3,1);
(3)∵$\overrightarrow{OC}=\overrightarrow{OF}+\overrightarrow{FC}=\overrightarrow{\\;y}+2\overrightarrow{x}$,所以(a,b)=(2,1);
(4)∵$\overrightarrow{OD}=\overrightarrow{OF}+\overrightarrow{FE}+\overrightarrow{ED}=3\overrightarrow{x}+2\overrightarrow{y}$,所以(a,b)=(3,2);
(5)∵$\overrightarrow{OE}=\overrightarrow{OF}+\overrightarrow{FE}=\overrightarrow{x}+\overrightarrow{y}$,所以(a,b)=(1,1);
(6)∵$\overrightarrow{OF}=\overrightarrow{y}$,所以(a,b)=(0,1);
因此﹐a+b的最大值為3+2=5﹒
故答案為:5﹒

點評 本題考查了平面向量的基本定理的應用問題,也考查了平面向量的坐標表示的應用問題,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知如圖為f(x)=msin(ωx+φ)+n,m>0,ω>0的圖象.
(1)求f(x)的解析式;
(2)在△ABC中,內角A,B,C的對邊分別為a,b,c,滿足$a=\sqrt{3},f(A)=1+\sqrt{3}$,求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知α,β,γ是三個不同的平面,l,m是兩條不同的直線,則下列命題一定正確的是(  )
A.若l丄α,l∥β則 α∥β
B.若γ丄α,γ丄β,則 α∥β
C.若l∥m且 l?α,m?β,l∥β,m∥α,則 α∥β
D.若l,m 異面,且 l?α,m?β,l∥β,m∥α,則 α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.為防止某種疾病,今研制一種新的預防藥,任選取100只小白鼠作試驗,得到如下的列聯(lián)表:
患病未患病總計
服用藥154055
沒服用藥202545
總計3565100
K2的觀測值為3.2079,則在犯錯誤的概率不超過( 。┑那疤嵯抡J為“藥物對防止某種疾病有效”.
參考數(shù)據:
P( K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A.0.025B.0.05C.0.010D.0.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在直角坐標系xOy中,直線l1:x=-2,曲線$C:\left\{\begin{array}{l}x=2cosθ\\ y=2+2sinθ\end{array}\right.$(θ為參數(shù)),以坐標原點O為極點,以x軸正半軸為極軸建立極坐標系.
(1)求直線l1及曲線C的極坐標方程;
(2)若直線l2的極坐標方程為$θ=\frac{π}{4}$(ρ∈R),設l2與曲線C的交點為M,N,求△CMN的面積及l(fā)1與l2交點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在△ABC中,若$\overrightarrow{AB}$$•\overrightarrow{AC}$=7,|$\overrightarrow{AB}$$-\overrightarrow{AC}$|=6,則△ABC的面積的最大值為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設命題p:函數(shù)y=f(x)不是偶函數(shù),命題q:函數(shù)y=f(x)是單調函數(shù),則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow a}|=2,|{\overrightarrow b}$|=2,|$\overrightarrow$|=1,且($\overrightarrow a+3\overrightarrow b})⊥({2\overrightarrow a-\overrightarrow b}$)⊥(2$\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow a,\overrightarrow b$的夾角為(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.甲、乙兩樓相距20m,從乙樓底望甲樓頂?shù)难鼋菫?0°,從甲樓頂望乙樓頂?shù)母┙菫?0°,則甲樓高和乙樓高的比為3:2.

查看答案和解析>>

同步練習冊答案