12.在數(shù)列{an}中,an>0,a1=$\frac{1}{2}$,如果an+1是1與$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$的等比中項(xiàng),那么a1+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{3}^{2}}$+$\frac{{a}_{4}}{{4}^{2}}$+…+$\frac{{a}_{2016}}{201{6}^{2}}$的值$\frac{2016}{2017}$.

分析 由an+1是1與$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$的等比中項(xiàng),可得${a}_{n+1}^{2}$=$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$,an>0,化為:an+1an+1=2an+1,通過求出a2=$\frac{2}{3}$,a3=$\frac{3}{4}$,…,猜想半球已知可得:an=$\frac{n}{n+1}$.$\frac{{a}_{n}}{{n}^{2}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,再利用“裂項(xiàng)求和方法”即可得出.

解答 解:∵an+1是1與$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$的等比中項(xiàng),
∴${a}_{n+1}^{2}$=$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$,an>0,
化為:an+1an+1=2an+1,
∴n=2時(shí),$\frac{1}{2}{a}_{2}$+1=2a2,解得a2=$\frac{2}{3}$,
∴n=3時(shí),$\frac{2}{3}$a3+1=2a3,a3=$\frac{3}{4}$,…,
猜想an=$\frac{n}{n+1}$,代入:an+1an+1=2an+1成立.
∴an=$\frac{n}{n+1}$,∴$\frac{{a}_{n}}{{n}^{2}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴a1+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{3}^{2}}$+$\frac{{a}_{4}}{{4}^{2}}$+…+$\frac{{a}_{2016}}{201{6}^{2}}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2016}-\frac{1}{2017})$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$.
故答案為:$\frac{2016}{2017}$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì)、猜想歸納能力、“裂項(xiàng)求和方法”,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a,b是兩條不同的直線,α是平面,且a?α,“a∥b”是“b∥α”的( 。
A.充分不必要條件B.必要不從分條件
C.充分不要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某單位需制作一種長方體包裝盒,有兩個(gè)要求:①容積為$\frac{512}{3}c{m^3}$.②包裝盒底面長方形的長是寬的2倍.請(qǐng)你設(shè)計(jì)包裝盒的長、寬、高,使包裝盒用料最省,并求出最小用料面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知,a=log0.30.2,b=log32,c=log0.23,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$$⊥\overrightarrow$,則|$\overrightarrow{a}$-$\overrightarrow$|是( 。
A.3B.2C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R恒有f(x+1)=f(x-1),已知當(dāng)x∈[0,1]時(shí),$f(x)={(\frac{1}{2})^{1-x}}$,則:①2是函數(shù)f(x)的周期;②函數(shù)f(x)在(1,2)上遞減,在(2,3)上遞增;③函數(shù)f(x)的最大值是1,最小值是0;④當(dāng)x∈(3,4)時(shí),$f(x)={(\frac{1}{2})^{x-3}}$.其中所有正確命題的序號(hào)是( 。
A.①②B.②④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.二次函數(shù)f(x)=x2-2x-3在[-2,1]上有幾個(gè)零點(diǎn)( 。
A.2B.3C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx+$\frac{a}{x+1}+b$(a,b∈R)
(1)當(dāng)a=4,b=-2時(shí),求函數(shù)f(x)在x=1處的切線方程
(2)在(1)的前提下,若函數(shù)f(x)的圖象恒不在曲線y=$\frac{k}{x+1}$(x≥1)的下方,求k的取值范圍
(3)若f(x)在定義域上是單調(diào)函數(shù),且零點(diǎn)為1,求a(b+1)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.關(guān)于x的不等式x2-2ax-8a2<0(a>0)的解集為(x1,x2),且x2+x1=15,則a的值為( 。
A.$\frac{5}{2}$B.$\frac{7}{2}$C.$\frac{15}{4}$D.$\frac{15}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案