【題目】設,已知定義在R上的函數(shù)在區(qū)間內(nèi)有一個零點, 為的導函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)設,函數(shù),求證: ;
(Ⅲ)求證:存在大于0的常數(shù),使得對于任意的正整數(shù),且 滿足.
【答案】(Ⅰ)增區(qū)間是, ,遞減區(qū)間是.(Ⅱ)見解析;(III)見解析.
【解析】試題分析:由于為,所以判斷的單調(diào)性,需要對二次求導,根據(jù)的導數(shù)的符號判斷函數(shù)的單調(diào)性,給出單調(diào)區(qū)間;由,得 ,.令函數(shù), 分別求導證明.有關零點問題,利用函數(shù)的單調(diào)性了解函數(shù)的圖像情況,對極值作出相應的要求可控制零點的個數(shù).
試題解析:(Ⅰ)解:由,可得,
進而可得.令,解得,或.
當x變化時, 的變化情況如下表:
x | |||
+ | - | + | |
↗ | ↘ | ↗ |
所以, 的單調(diào)遞增區(qū)間是, ,單調(diào)遞減區(qū)間是.
(Ⅱ)證明:由,得,
.
令函數(shù),則.由(Ⅰ)知,當時, ,故當時, , 單調(diào)遞減;當時, , 單調(diào)遞增.因此,當時, ,可得.
令函數(shù),則.由(Ⅰ)知, 在上單調(diào)遞增,故當時, , 單調(diào)遞增;當時, , 單調(diào)遞減.因此,當時, ,可得.
所以, .
(III)證明:對于任意的正整數(shù) , ,且,
令,函數(shù).
由(II)知,當時, 在區(qū)間內(nèi)有零點;
當時, 在區(qū)間內(nèi)有零點.
所以在內(nèi)至少有一個零點,不妨設為,則.
由(I)知在上單調(diào)遞增,故,
于是.
因為當時, ,故在上單調(diào)遞增,
所以在區(qū)間上除外沒有其他的零點,而,故.
又因為, , 均為整數(shù),所以是正整數(shù),
從而.
所以.所以,只要取,就有.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2an﹣2(n∈N*),數(shù)列{bn}滿足b1=1,且點P(bn , bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和Dn;
(3)設cn=ansin2 ,求數(shù)列{cn}的前2n項和T2n .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中P﹣ABCD,底面ABCD為邊長為 的正方形,PA⊥BD.
(1)求證:PB=PD;
(2)若E,F(xiàn)分別為PC,AB的中點,EF⊥平面PCD,求直線PB與平面PCD所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線上一點, 到直線的距離為, 到的準線的距離為,且的最小值為.
(Ⅰ)求拋物線的方程;
(Ⅱ)直線交于點,直線交于點,線段的中點分別為,若,直線的斜率為,求證:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為等差數(shù)列,前n項和為, 是首項為2的等比數(shù)列,且公比大于0, ,, .
(Ⅰ)求和的通項公式;
(Ⅱ)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在長方體ABCD﹣A1B1C1D1中,AB=5,AD=8,AA1=4,M為B1C1上一點且B1M=2,點N在線段A1D上,A1D⊥AN.
(1)求直線A1D與AM所成角的余弦值;
(2)求直線AD與平面ANM所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】1927年德國漢堡大學的學生考拉茲提出一個猜想:對于每一個正整數(shù),如果它是奇數(shù),對它乘3再加1,如果它是偶數(shù),對它除以2,這樣循環(huán),最終結(jié)果都能得到1.該猜想看上去很簡單,但有的數(shù)學家認為“該猜想任何程度的解決都是現(xiàn)代數(shù)學的一大進步,將開辟全新的領域至于如此簡單明了的一個命題為什么能夠開辟一個全新的領域,這大概與它其中蘊含的奇偶歸一思想有關.如圖是根據(jù)考拉茲猜想設計的一個程序框圖,則①處應填寫的條件及輸出的結(jié)果分別為
A. 是偶數(shù)?;6 B. 是偶數(shù)?;8
C. 是奇數(shù)?;5 D. 是奇數(shù)?;7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設平面直角坐標系xOy中,曲線G:y= + x﹣a2(x∈R),a為常數(shù).
(1)若a≠0,曲線G的圖象與兩坐標軸有三個交點,求經(jīng)過這三個交點的圓C的一般方程;
(2)在(1)的條件下,求圓心C所在曲線的軌跡方程;
(3)若a=0,已知點M(0,3),在y軸上存在定點N(異于點M)滿足:對于圓C上任一點P,都有 為一常數(shù),試求所有滿足條件的點N的坐標及該常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com