【題目】如圖,在半徑為,圓心角為的扇形金屬材料中剪出一個(gè)長(zhǎng)方形,并且的平分線平行,設(shè).

(1)試將長(zhǎng)方形的面積表示為的函數(shù);

2若將長(zhǎng)方形彎曲,使重合焊接制成圓柱的側(cè)面,當(dāng)圓柱側(cè)面積最大時(shí),求圓柱的體積(假設(shè)圓柱有上下底面);為了節(jié)省材料,想從△中直接剪出一個(gè)圓面作為圓柱的一個(gè)底面,請(qǐng)問是否可行?并說明理由.

(參考公式:圓柱體積公式.其中是圓柱底面面積,是圓柱的高;等邊三角形內(nèi)切圓半徑.其中是邊長(zhǎng))

【答案】(1) ;(2),直接剪出一個(gè)圓面作為圓柱的一個(gè)底面可行.

【解析】

試題分析:由題意得出,則根據(jù)

,即可得到答案;

由(1)取最大值,由圓柱底面面積 ,計(jì)算得 ,然后得,邊長(zhǎng) ,內(nèi)切圓半徑,由圓柱底面半徑,,做出判定

解析:(1)由題意,又

,所以

所以 .

(2)由(1)取最大值時(shí),,所以

因?yàn)?/span> ,設(shè)圓柱底面半徑為,所以,,

所以圓柱底面面積 ,又 ,

所以

,因?yàn)?/span>,所以.

在等邊△中,邊長(zhǎng) ,內(nèi)切圓半徑,

由圓柱底面半徑,因?yàn)?/span>,所以直接剪出一個(gè)圓面作為圓柱的一個(gè)底面可行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,.

(1)求;

(2)平面內(nèi)點(diǎn)的上方,且滿足,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),則下列命題中正確的個(gè)數(shù)是( )

當(dāng)時(shí),函數(shù)上是單調(diào)增函數(shù);

當(dāng)時(shí),函數(shù)上有最小值;

函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;

方程可能有三個(gè)實(shí)數(shù)根.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形,,,.

1求證:平面BCE;

2求證:平面BCE;

3求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對(duì)稱點(diǎn).

(1)若,證明:函數(shù)必有局部對(duì)稱點(diǎn);

(2)若函數(shù)在區(qū)間內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)的取值范圍;

(3)若函數(shù)上有局部對(duì)稱點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校早上8:00開始上課,假設(shè)該校學(xué)生小張與小王在早上7:30~7:50之間到校,且每人在該時(shí)間段的任何時(shí)刻到校是等可能的,則小張比小王至少晚5分鐘到校的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知關(guān)于的一次函數(shù)

(1)設(shè)集合分別從集合中隨機(jī)取一個(gè)數(shù)作為,求函數(shù)是增函數(shù)的概率;

(2)實(shí)數(shù)滿足條件求函數(shù)的圖象經(jīng)過一、二、三象限的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓x2+y2-4x-4y-10=0上至少有三個(gè)不同點(diǎn)到直線l:ax+by=0的距離為2,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(1+x)﹣ln(1﹣x),則f(x)是(
A.奇函數(shù),且在(0,1)上是增函數(shù)
B.奇函數(shù),且在(0,1)上是減函數(shù)
C.偶函數(shù),且在(0,1)上是增函數(shù)
D.偶函數(shù),且在(0,1)上是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案