如果
sin(α+β)
sin(α-β)
=
m
n
,那么
tanβ
tanα
等于
 
分析:先令sin(α+β)=m,sin(α-β)=n,利用兩角和公式進行展開,聯(lián)立方程可求得sinαcosβ和cosαsinβ的值,進而兩式相除即可求得答案.
解答:解:令sin(α+β)=sinαcosβ+cosαsinβ=m①
sin(α-β)=sinαcosβ-cosαsinβ=n②
①+②求得sinαcosβ=
m+n
2

①-②求得cosαsinβ=
m-n
2

則③÷④得
sinαcosβ
cosαsinβ
=
tanα
tanβ
=
m+n
m-n

tanβ
tanα
=
m-n
m+n

故答案為
m-n
m+n
點評:本題主要考查了三角函數(shù)的恒等變換的應用,兩角和公式的應用.考查了考生對三角函數(shù)基本關系的理解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設0≤θ<2π,如果sinθ<0且cos2θ<0,則θ的取值范圍是(  )
A、π<θ<
2
B、
2
<θ<2π
C、
π
4
<θ<
4
D、
4
<θ<
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果sin(π+A)=
1
2
,那么cos(
2
-A
)的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果sinθ=
3
5
,且θ是第二象限角,那么sin(θ+
π
2
)=
-
4
5
-
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果sinα=
2
2
3
,α為第一象限角,則sin(
π
2
)=
1
3
1
3

查看答案和解析>>

同步練習冊答案