如圖所示,空間中有一直角三角形,為直角,,,現(xiàn)以其中一直角邊為軸,按逆時針方向旋轉(zhuǎn)后,將點所在的位置記為,再按逆時針方向繼續(xù)旋轉(zhuǎn)后,點所在的位置記為.
(1)連接,取的中點為,求證:面;
(2)求與平面所成的角的正弦值.

(1)詳見解析;(2).

解析試題分析:(1)利用全等得到,再利用三線合一得到,,利用直線與平面垂直的判定定理得到平面,再利用平面與平面垂直的判定定理證明平面平面;(2)取的中點,連接,過點的垂線,垂足為點
于是得到為直線與平面所成的角,利用中位線得到,于是得到直線與平面所成的角等于,最后在計算即可.
(1)由題意可知:全等,
,的中點,
,
,平面,平面,
平面平面;
(2)由題意可知:的中點,取的中點為,連接,
的垂線,垂足為,連接,
由(1)可知面,,
在平面上的射影,與平面所成的角,
,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分別是棱A1B1、AA1的中點,點F在棱AB上,且
(1)求證:EF∥平面BDC1;  
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,,,是正三角形,平面平面
(1)求證:
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,側(cè)面PAD底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點.
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求點A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2011•湖北)如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4,E是BC的中點,動點F在側(cè)棱CC1上,且不與點C重合.
(1)當CF=1時,求證:EF⊥A1C;
(2)設二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,AC,,點M在線段PD上.

(1)求證:平面PAC;
(2)若二面角M-AC-D的大小為,試確定點M的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直四棱柱中,,,,,E為CD上一點,,

(1)證明:BE⊥平面
(2)求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方體中,已知為棱上的動點.

(1)求證:;
(2)當為棱的中點時,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案