17.已知隨機變量X服從正態(tài)分布N(3,1),且P(X≥4)=0.1587,則P(2<X<4)=( 。
A.0.6826B.0.3413C.0.4603D.0.9207

分析 根據(jù)隨機變量X服從正態(tài)分布,可知正態(tài)曲線的對稱軸x=μ=3,利用對稱性,即可求得P(2<X<4).

解答 解:∵隨機變量X服從正態(tài)分布N(3,1),
∴正態(tài)曲線的對稱軸是x=3,
∵P(X≥4)=0.1587,
∴P(2<X<4)=1-2P(X≥4)=1-0.3174=0.6826.
故選:A.

點評 本題主要考查正態(tài)分布曲線的特點及曲線所表示的意義,注意根據(jù)正態(tài)曲線的對稱性解決問題.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.根據(jù)如下樣本數(shù)據(jù)
x234567
y4.12.5-0.50.5-2.0-3.0
得到的回歸方程為$\widehaty=\hat bx+\hat a$,則(  )
A.$\hat a>0,\hat b>0$B.$\hat a>0,\hat b<0$C.$\hat a<0,\hat b>0$D.$\hat a<0,\hat b<0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,李先生家住H小區(qū),他工作在C處科技園區(qū),從家開車到公司上班路上有L1、L2兩條路線,L1路線上有A1、A2、A3三個路口,各路口遇到紅燈的概率均為$\frac{1}{2}$;L2路線上有B1、B2兩個路口,各路口遇到紅燈的概率依次為$\frac{3}{4}$,$\frac{3}{5}$.
(1)若走L2路線,求遇到紅燈次數(shù)X的分布列和數(shù)學(xué)期望;
(2)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某市對創(chuàng)“市級示范性學(xué)!钡募住⒁覂伤鶎W(xué)校進行復(fù)查驗收,對辦學(xué)的社會滿意度一項評價隨機訪問了20位市民,這20位市民對這兩所學(xué)校的評分(評分越高表明市民的評價越好)的數(shù)據(jù)如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績分成了四個等級:成績在區(qū)間[85,100]的為A等,在區(qū)間[70,85)的為B等,在區(qū)間[60,70)的為C等,在區(qū)間[0,60)為D等.
(1)請用莖葉圖表示上面的數(shù)據(jù),并通過觀察莖葉圖,對兩所學(xué)校辦學(xué)的社會滿意度進行比較,寫出兩個統(tǒng)計結(jié)論;
(2)估計哪所學(xué)校的市民的評分等級為A級或B級的概率大,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.(t$為參數(shù))與圓$\left\{\begin{array}{l}x=4+2cosφ\\ y=2sinφ\end{array}\right.(φ$為參數(shù))相切,則此直線的傾斜角$α({α>\frac{π}{2}})$等于(  )
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某幾何體三視圖如圖所示,則該幾何體的體積為$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義在R上的增函數(shù)y=f(x)滿足f(x)+f(4-x)=0,若實數(shù)a、b滿足不等式f(a)+f(b)≥0,則a2+b2的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.展館附近一家川菜特色餐廳為了研究參會人數(shù)與本店所需原材料數(shù)量的關(guān)系,在交易會前查閱了最近5次交易會的參會人數(shù)x(萬人)與餐廳所用原材料數(shù)量y(袋),得到如下數(shù)據(jù):
第一次第二次第三次第四次第五次
參會人數(shù)x(萬人)11981012
原材料t(袋)2823202529
(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會大約有13萬人參加,為了保證原材料能夠滿足需要,則該店應(yīng)至少再補充原材料多少袋?
(參考公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.調(diào)查某學(xué)校學(xué)生的課外活動情況,制成等高條形圖如圖所示,則有較大把握判斷:該校學(xué)生課外喜歡體育活動還是文娛活動與性別有(填“有”或“無”)關(guān).

查看答案和解析>>

同步練習(xí)冊答案