【題目】如圖,在正三棱柱ABC﹣A1B1C1中,所有棱長均為1,則點B1到平面ABC1的距離為

【答案】

【解析】

試題分析:在立體幾何中,求點到平面的距離是一個常見的題型,同時求直線到平面的距離、平行平面間的距離及多面體的體積也常轉(zhuǎn)化為求點到平面的距離.本題采用的是找垂面法:即找(作)出一個過該點的平面與已知平面垂直,然后過該點作其交線的垂線,則得點到平面的垂線段.觀察點的位置可知:點B1到平面ABC1的距離就等于點C到平面ABC1的距離,取AB得中點M,連接CM,C1M,過點CCDC1M,垂足為D,則平面ABC1平面C1CM,所以CD平面C1AB,故CD的長度即為點C到平面ABC1的距離,在RtC1CM中,利用等面積法即可求出CD的長度.

解:如圖所示,取AB得中點M,連接CM,C1M,過點CCDC1M,垂足為D

C1A=C1B,MAB中點,

C1MAB

CA=CB,MAB中點,

CMAB

C1M∩CM=M,

AB平面C1CM

AB平面ABC1

平面ABC1平面C1CM,平面ABC1平面C1CM=C1MCDC1M,

CD平面C1AB

CD的長度即為點C到平面ABC1的距離,即點B1到平面ABC1的距離

RtC1CM中,C1C=1,CM=C1M=

CD=,即點B1到平面ABC1的距離為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)是奇函數(shù),求實數(shù)的值;

(2)在(1)的條件下,判斷函數(shù)與函數(shù)的圖象公共點個數(shù),并說明理由;

(3)當(dāng)時,函數(shù)的圖象始終在函數(shù)的圖象上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)求的單調(diào)區(qū)間和極值;

(2)證明:若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)=|x+ ﹣a|+a在區(qū)間[1,4]上的最大值是5,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線x2=y,點A(﹣ , ),B( , ),拋物線上的點P(x,y)(﹣ <x< ),過點B作直線AP的垂線,垂足為Q.
(Ⅰ)求直線AP斜率的取值范圍;
(Ⅱ)求|PA||PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,角α與角β均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱,若sinα= ,則cos(α﹣β)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=excosx﹣x.(13分)
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20131月,北京經(jīng)歷了59年來霧霾天氣最多的一個月.據(jù)氣象局統(tǒng)計,北京市201311日至130日這30天里有26天出現(xiàn)霧霾天氣,《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》如表1:

1 空氣質(zhì)量指數(shù)AQI分組表

AQI指數(shù)M

0~50

51~100

101~150

151~200

201~300

>300

級別

狀況

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

2是某氣象觀測點記錄的連續(xù)4天里AQI指數(shù)M與當(dāng)天的空氣水平可見度y(km)的情況,表3是某氣象觀測點記錄的北京市201311日至130日的AQI指數(shù)頻數(shù)分布表.

2 AQI指數(shù)M與當(dāng)天的空氣水平可見度y(km)的情況

AQI指數(shù)M

900

700

300

100

空氣水平可見度y(km)

0.5

3.5

6.5

9.5

3 北京市201311日至130AQI指數(shù)頻數(shù)分布表

AQI指數(shù)M

[0,200)

[200,400)

[400,600)

[600,800)

[800,1000]

頻數(shù)

3

6

12

6

3

(1)設(shè)x,根據(jù)表2的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.

(參考公式:,.)

(2)小王在北京開了一家洗車店,經(jīng)小王統(tǒng)計:當(dāng)AQI指數(shù)低于200時,洗車店平均每天虧損約2000元;當(dāng)AQI指數(shù)在200400時,洗車店平均每天收入約4000元;當(dāng)AQI指數(shù)不低于400時,洗車店平均每天收入約7000元.

①估計小王的洗車店在20131月份平均每天的收入;

②從AQI指數(shù)在[0,200)[800,1000]內(nèi)的這6天中抽取2天,求這2天的收入之和不低于5000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1:y=cosx,C2:y=sin(2x+ ),則下面結(jié)論正確的是(  )
A.把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個單位長度,得到曲線C2
B.把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移 個單位長度,得到曲線C2
C.把C1上各點的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個單位長度,得到曲線C2
D.把C1上各點的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個單位長度,得到曲線C2

查看答案和解析>>

同步練習(xí)冊答案