【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)的時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如下表:
超過1小時(shí) | 不超過1小時(shí) | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95多的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過1小時(shí)與性別有關(guān)?
(3)以樣本中學(xué)生參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機(jī)調(diào)查6名學(xué)生,試估計(jì)6名學(xué)生中一周參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
【答案】(1),(2)沒有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過1小時(shí)與性別有關(guān)(3)估計(jì)這6名學(xué)生中一周參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的人數(shù)是4人
【解析】
(1)根據(jù)分層抽樣比例列方程求出n的值,再計(jì)算m的值;
(2)根據(jù)題意完善2×2列聯(lián)表,計(jì)算K2,對(duì)照臨界值表得出結(jié)論;
(3)計(jì)算參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的頻率,用頻率估計(jì)概率,計(jì)算所求的頻數(shù)即可.
(1)根據(jù)分層抽樣法,抽樣比例為,
∴n=48;
∴m=48﹣20﹣8﹣12=8;
(2)根據(jù)題意完善2×2列聯(lián)表,如下;
超過1小時(shí) | 不超過1小時(shí) | 合計(jì) | |
男生 | 20 | 8 | 28 |
女生 | 12 | 8 | 20 |
合計(jì) | 32 | 16 | 48 |
計(jì)算K20.6857<3.841,
所以沒有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過1小時(shí)與性別有關(guān);
(3)參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的頻率為,
用頻率估計(jì)概率,從該校學(xué)生中隨機(jī)調(diào)査6名學(xué)生,
估計(jì)這6名學(xué)生中一周參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的人數(shù)為64(人).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,,是的動(dòng)點(diǎn),過點(diǎn)作的垂線,線段的中垂線交于點(diǎn),的軌跡為.
(1)求軌跡的方程;
(2)過且與坐標(biāo)軸不垂直的直線交曲線于兩點(diǎn),若以線段為直徑的圓與直線相切,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinxcosx+cos2x-.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)將函數(shù)f(x)圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)g(x)的圖象.若關(guān)于x的方程g(x)-k=0,在區(qū)間[0,]上有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】校園準(zhǔn)備綠化一塊直徑為的半圓形空地,點(diǎn)在半圓圓弧上,△外的地方種草,△的內(nèi)接正方形為一水池(,在邊上),其余地方種花,若, ,設(shè)△的面積為,正方形面積為;
(1)用和表示和;
(2)當(dāng)固定,變化時(shí),求最小值及此時(shí)的角;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點(diǎn)。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場按月訂購一種家用電暖氣,每銷售一臺(tái)獲利潤200元,未銷售的產(chǎn)品返回廠家,每臺(tái)虧損50元,根據(jù)往年的經(jīng)驗(yàn),每天的需求量與當(dāng)天的最低氣溫有關(guān),如果最低氣溫位于區(qū)間,需求量為100臺(tái);最低氣溫位于區(qū)間,需求量為200臺(tái);最低氣溫位于區(qū)間,需求量為300臺(tái)。公司銷售部為了確定11月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年11月份各天的最低氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:
最低氣溫(℃) | |||||
天數(shù) | 11 | 25 | 36 | 16 | 2 |
以最低氣溫位于各區(qū)間的頻率代替最低氣溫位于該區(qū)間的概率.
求11月份這種電暖氣每日需求量(單位:臺(tái))的分布列;
若公司銷售部以每日銷售利潤(單位:元)的數(shù)學(xué)期望為決策依據(jù),計(jì)劃11月份每日訂購200臺(tái)或250臺(tái),兩者之中選其一,應(yīng)選哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游風(fēng)景區(qū)發(fā)行的紀(jì)念章即將投放市場,根據(jù)市場調(diào)研情況,預(yù)計(jì)每枚該紀(jì)念章的市場價(jià)y(單位:元)與上市時(shí)間x(單位:天)的數(shù)據(jù)如下:
上市時(shí)間x天 | 2 | 6 | 20 |
市場價(jià)y元 | 102 | 78 | 120 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場價(jià)y與上市時(shí)間x的變化關(guān)系并說明理由:①;②;③;
(2)利用你選取的函數(shù),求該紀(jì)念章市場價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格;
(3)利用你選取的函數(shù),若存在,使得不等式成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負(fù)方得0分,設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率;
(2)表示開始第4次發(fā)球時(shí)乙的得分,求的期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com