【題目】給出下列命題:①y= 是奇函數(shù);
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)f(x)=2x﹣x2在R上有3個(gè)零點(diǎn);
④函數(shù)y=sin2x的圖象向左平移 個(gè)單位,得到函數(shù) 的圖象.
其中正確命題的序號(hào)是 . (把正確命題的序號(hào)都填上)
【答案】①③
【解析】函數(shù)f(x)= 的定義域?yàn)镽,
且f(﹣x)+f(x)
= + =lg1=0,
即f(﹣x)=﹣f(x)
∴①y= 是奇函數(shù)正確;
若α,β是第一象限角,且α>β,但α,β不一定在同一單調(diào)區(qū)間上,則cosα<cosβ不一定成立,故②錯(cuò)誤;
在同一平面坐標(biāo)系中畫出y=2x與函數(shù)y=x2的圖象,易得兩函數(shù)的圖象共有3個(gè)交點(diǎn),故③函數(shù)f(x)=2x﹣x2在R上有3個(gè)零點(diǎn)正確;
函數(shù)y=sin2x的圖象向左平移 個(gè)單位,得到函數(shù) = 的圖象,故④錯(cuò)誤.
所以答案是:①③
【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F為橢圓C1: =1,(a1>b1>0)與雙曲線C2的公共左、右焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)M,△MF1F2是以線段MF1為底邊的等腰三角形,且|MF1|=2,若橢圓C1的離心率e∈[ , ],則雙曲線C2的離心率的取值范圍是( )
A.[ , ]
B.[ ,++∞)
C.(1,4]
D.[ ,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列幾個(gè)命題
①方程ax2+x+1=0有且只有一個(gè)實(shí)根的充要條件是a= ;
②函數(shù)y= + 是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)=(2x﹣3)2+1的圖象是由函數(shù)y=(2x﹣5)2+1的圖象向左平移1個(gè)單位得到的;
④命題“若x,y都是偶數(shù),則x+y也是偶數(shù)”的逆命題為真命題;
⑤已知p,q是簡(jiǎn)單命題,若p∨q是真命題,則p∧q也是真命題;
⑥若函數(shù)f(x)=|ax﹣1|﹣log2(x+2),(a>1)有兩個(gè)零點(diǎn)x1 , x2 , 則(x1+2)(x2+2)>1.
其中正確的個(gè)數(shù)是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí),(萬元).每件商品售價(jià)為0.05萬元.通過市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.(Ⅰ)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間20名工人年齡數(shù)據(jù)如下表:
年齡(歲) | 工人數(shù)(人) |
19 | 1 |
28 | 3 |
29 | 3 |
30 | 5 |
31 | 4 |
32 | 3 |
40 | 1 |
合計(jì) | 20 |
(1)求這20名工人年齡的眾數(shù)與極差;
(2)以十位數(shù)為莖,個(gè)位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(3)求這20名工人年齡的方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) 是偶函數(shù),求解下列問題.
(1)求θ;
(2)將函數(shù)y=f(x)的圖象先縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,再向左平移 個(gè)單位,然后向上平移1個(gè)單位得到y(tǒng)=g(x)的圖象,若關(guān)于x的方程 在 有且只有兩個(gè)不同的根,求m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(a,cos2x), =(1+sin2x , ),x∈R,記f(x)= .若y=f(x)的圖象經(jīng)過點(diǎn)( ,2 ).
(1)求實(shí)數(shù)a的值;
(2)設(shè)x∈[﹣ , ],求f(x)的最大值和最小值;
(3)將y=f(x)的圖象向右平移 ,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的4倍,縱坐標(biāo)不變,得到y(tǒng)=g(x)的圖象,求y=g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直l的參數(shù)方程是(t是參數(shù))
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),且|AB|=,求直線的傾斜角α的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com