17.在區(qū)間(0,2)內(nèi)隨機(jī)取出兩個數(shù)x,y,則1,x,y能作為三角形三條邊的概率為(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{7}{8}$

分析 首先明確事件測度為圖形面積,利用面積比求概率.

解答 解:由題,$\left\{\begin{array}{l}1+x>y\\ 1+y>x\\ x+y>1\end{array}\right.$,作出可行域如下,
${S_陰}=4-\frac{1}{2}×3=\frac{5}{2}$,故由幾何概型的公式得到$p=\frac{{\frac{5}{2}}}{2×2}=\frac{5}{8}$,
故選:C.

點評 本題考查了幾何概型的概率求法;由題意選擇面積比求概率是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若角α=600°的終邊上有一點(a,-2),則a的值是( 。
A.$-\frac{{2\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$±\frac{{2\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(-2,0),$\overrightarrow{c}$=(3,2),若向量$\overrightarrow{c}$與向量k$\overrightarrow{a}+\overrightarrow$垂直,則實數(shù)k=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果復(fù)數(shù)z滿足|z+1-i|=2,那么|z-2+i|的最大值是( 。
A.$\sqrt{13}+2$B.$2+\sqrt{3}i$C.$\sqrt{13}+\sqrt{2}$D.$\sqrt{13}+4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項和為Sn,對一切n∈N*,點(n,$\frac{{S}_{n}}{n}$)都在函數(shù)f(x)=x+$\frac{{a}_{n}}{2x}$的圖象上.
(1)求a1,a2,a3的值,猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(2)將數(shù)列{an}依次按1項、2項、3項、4項循環(huán)地分為
(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);
(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);
(a21),(a22,a23),(a24,a25,a26),(a27,a28,a29,a30);…
分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為{bn},求b2018-b1314的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(-2,2-x),若$\overrightarrow{a}$∥$\overrightarrow$,則x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x•lnx,g(x)=2mx-1(m∈R).
(Ⅰ)求函數(shù)f(x)在x=1處的切線方程;
(Ⅱ)若$?x∈[{\frac{1}{e},e}]$,f(x)>g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.長方體ABCD-A1B1C1D1中,AB=BC=1,CC1=$\sqrt{2}$,則異面直線AC與BA1所成角的余弦值為( 。
A.$\frac{{\sqrt{30}}}{6}$B.$\frac{2}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,且cosC=$\frac{a}$.
(1)求B;
(2)設(shè)CM是角C的平分線,且CM=1,a=$\frac{3}{4}$,求b.

查看答案和解析>>

同步練習(xí)冊答案