【題目】設(shè)p:實(shí)數(shù)x滿足x2-2(a+1)x+2a+a2<0,q:實(shí)數(shù)x滿足

(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;

(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

【答案】(1);(2)

【解析】

(1)代入不等式后求解不等式,同時(shí)求解不等式組,得到命題和命題的取值范圍,為真,對(duì)求得的兩個(gè)范圍求交集即可;(2)的必要不充分條件,則集合是集合的子集,分類討論后運(yùn)用區(qū)間端點(diǎn)值之間的關(guān)系可求的取值范圍.

(1)由x2-2(a+1)x+a+a2<0得(x-(a+2))(x-a)<0,

當(dāng)a=1時(shí),解得1<x<3,即p為真時(shí)實(shí)數(shù)x的取值范圍是1<x<3.

得2<x≤3,即q為真時(shí)實(shí)數(shù)x的取值范圍是2<x≤3.

若p∧q為真,則p真且q真,所以實(shí)數(shù)x的取值范圍是(2,3).

(2)p是q的必要不充分條件, A=(a,a+2),B=(2,3],故有

解得1<a≤2;所以實(shí)數(shù)a的取值范圍是(1,2].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線axby—4=0和圓x2y2=4沒有公共點(diǎn),則過點(diǎn)(a,b)的直線與橢圓=1的公共點(diǎn)個(gè)數(shù)為(  )

A. 0 B. 1 C. 2 D. a,b的取值來確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,若是線段上的動(dòng)點(diǎn),則下列結(jié)論不正確的是(  )

A. 三棱錐的正視圖面積是定值

B. 異面直線,所成的角可為

C. 異面直線,所成的角為

D. 直線與平面所成的角可為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方造一千多年,例如塹堵指底面為直角三角形,且測(cè)量垂直底面的三棱柱,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,如圖,在塹堵中,,若當(dāng)陽馬的體積最大時(shí),則塹堵的體積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是線段BF上一點(diǎn),AB=AF=BC=2.

(1)當(dāng)GB=GF時(shí),求證:EG∥平面ABC;
(2)求二面角E﹣BF﹣A的余弦值;
(3)是否存在點(diǎn)G滿足BF⊥平面AEG?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn)是直線上一動(dòng)點(diǎn),過點(diǎn)作圓的切線

(1)當(dāng)的橫坐標(biāo)為2時(shí),求切線方程;

(2)求證:經(jīng)過三點(diǎn)的圓必過定點(diǎn),并求此定點(diǎn)的坐標(biāo);

(3)當(dāng)線段長度最小時(shí),求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點(diǎn).

(1)求B點(diǎn)到平面PCD的距離;

(2)線段PD上是否存在一點(diǎn)Q,使得二面角Q-AC-D的余弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,平面,,點(diǎn)分別為中點(diǎn).

(1)求證:直線平面;

(2)求證:;

(3)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓學(xué)生更多的了解數(shù)學(xué)史知識(shí),梁才學(xué)校高二年級(jí)舉辦了一次追尋先哲的足跡,傾聽數(shù)學(xué)的聲音的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果見下表.請(qǐng)你根據(jù)頻率分布表解答下列問題:

序號(hào)

分組

組中值

頻數(shù)

頻率

i

(分?jǐn)?shù))

Gi

(人數(shù))

Fi

1

65

0.12

2

75

20

3

85

0.24

4

95

合計(jì)

50

1

(1)填充頻率分布表中的空格;

(2)為鼓勵(lì)更多的學(xué)生了解數(shù)學(xué)史知識(shí),成績不低于85分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在

參加的800名學(xué)生中大概有多少名學(xué)生獲獎(jiǎng)?(3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖,求輸出的S的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案