在三棱錐中,,,二面角的余弦值是,若都在同一球面上,則該球的表面積是.
.

試題分析:取中點(diǎn),連接,∵,∴,∵
,平面.∴為二面角.在中,,,
.取等邊的中心,作平面,過平面,為外接球球心,
,二面角的余弦值是,所以,,
,∴點(diǎn)為四面體的外接球球心,其半徑為,表面積為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖在三棱柱ABC-A1B1C1中,AB⊥AC,頂點(diǎn)A1在底面ABC上的射影恰為點(diǎn)B,且AB=AC=A1B=2.
 
(1)證明:平面A1AC⊥平面AB1B;
(2)若點(diǎn)P為B1C1的中點(diǎn),求三棱錐P-ABC與四棱錐P-AA1B1B的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,三棱柱中,側(cè)棱平面,為等腰直角三角形,,且分別是的中點(diǎn).

(1)求證:平面;
(2)求證:平面;
(3)設(shè),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖甲,是邊長(zhǎng)為6的等邊三角形,分別為靠近的三等分點(diǎn),點(diǎn)為邊邊的中點(diǎn),線段交線段于點(diǎn).將沿翻折,使平面平面,連接,形成如圖乙所示的幾何體.

(1)求證:平面
(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)正三棱柱的側(cè)棱長(zhǎng)和底面邊長(zhǎng)相等,體積為2,它的三視圖中的俯視圖如圖所示,側(cè)視圖是一個(gè)矩形,則這個(gè)矩形的面積是(  )
A.4 B.2 C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知某一多面體內(nèi)接于一個(gè)簡(jiǎn)單組合體,如果該組合體的正視圖.測(cè)試圖.俯視圖均如圖所示,且圖中的四邊形是邊長(zhǎng)為2的正方形,則該球的表面積是_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知三棱柱ABC-A1B1C1底面是邊長(zhǎng)為的正三角形,側(cè)棱垂直于底面,且該三棱柱的外接球表面積為12,則該三棱柱的體積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

四面體中,互相垂直,,且,則四面體的體積的最大值是(   ) .
A.4B.2C.5D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知一個(gè)正方體的所有頂點(diǎn)在一個(gè)球面上,若球的體積為,則正方體的棱長(zhǎng)為    .

查看答案和解析>>

同步練習(xí)冊(cè)答案