(2009•成都二模)在△ABC中,a、b、c分別是三內(nèi)角A、B、C所對邊的長,若bsinA=asinC,則△ABC的形狀( 。
分析:利用正弦定理,將邊轉(zhuǎn)化為角,可得sinBsinA=sinAsinC,所以sinB=sinC,所以△ABC是等腰三角形.
解答:解:根據(jù)正弦定理,∵bsinA=asinC,
∴sinBsinA=sinAsinC,
∵A是三角形的內(nèi)角
∴sinA≠0
∴sinB=sinC
∴b=c
∴△ABC是等腰三角形
故選C.
點(diǎn)評:本題以三角形為載體,考查三角形形狀的判斷,考查正弦定理的運(yùn)用,解題時(shí)將邊角互化是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都二模)質(zhì)檢部門將對12個(gè)廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗(yàn)合格,則該廠家的奶粉即可投放市場;若檢驗(yàn)不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個(gè)廠家中只有2個(gè)廠家的奶粉存在質(zhì)量問題(即檢驗(yàn)不能合格),但不知道是哪兩個(gè)廠家的奶粉.
(I)從中任意選取3個(gè)廠家的奶粉進(jìn)行檢驗(yàn),求至少有2個(gè)廠家的奶粉檢驗(yàn)合格的概率;
(Ⅱ)每次從中任意抽取一個(gè)廠家的奶粉進(jìn)行檢驗(yàn)(抽檢不重復(fù)),記首次抽檢到合格奶粉時(shí)已經(jīng)檢驗(yàn)出奶粉存在質(zhì)量問題的廠家個(gè)數(shù)為隨即變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都二模)已知集合P={x|x2-2x+1=0,x∈R},則集合P的子集個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都二模)化簡復(fù)數(shù)i3-
1+i
1-i
的結(jié)果是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都二模)已知函數(shù)f(x)的定義域?yàn)閇0,1),則函數(shù)f(1-x)的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

同步練習(xí)冊答案