將直線2x-y-4=0繞著其與x軸的交點逆時針旋轉(zhuǎn)
π
4
得到直線m,則m的方程為
 
考點:兩直線的夾角與到角問題
專題:直線與圓
分析:先求得直線2x-y-4=0與x軸的交點坐標,設m的斜率為k,由題意可得tan
π
4
=
k-2
1+k•2
,解得 k的值,
再用點斜式求得m的方程.
解答: 解:直線2x-y-4=0繞著其與x軸的交點為(2,0),
逆時針旋轉(zhuǎn)
π
4
得到直線m,設m的斜率為k,
則由題意可得tan
π
4
=
k-2
1+k•2
=1,解得 k=-3,
用點斜式求得m的方程為y-0=-3(x-2),
即:3x+y-6=0,
故答案為:3x+y-6=0.
點評:本題主要考查一條直線到另一條直線的夾角公式的應用,求出直線m的斜率,是解題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3ax+b,(a,b∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)曲線y=f(x)在x=0處的切線方程為3ax+y-2a=0,且y=f(x)與x軸有且只有一個公共點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用“五點作圖法”在已給坐標系中畫出函數(shù)y=2sin(
1
3
x-
π
6
)一個周期內(nèi)的簡圖,并指出該函數(shù)圖象是由函數(shù)y=sinx的圖象進行怎樣的變換而得到的?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n=100,則輸出的S=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(
x
+
a
x
)6
(a>0)的展開式中含常數(shù)項的系數(shù)是60,則
a
0
sinxdx的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果直線l在平面α外,那么一定有(  )
A、?P∈l,P∈α
B、?P∈l,P∈α
C、?P∈l,P∉α
D、?P∈l,P∉α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)從[0,3]中隨機取一個數(shù)a,則事件“不等式|x+1|+|x-1|<a有解”發(fā)生的概率為( 。
A、
5
6
B、
2
3
C、
1
6
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2cos2
π
12
-1的值為( 。
A、
1
2
B、
2
2
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的前n項和為Sn,已知an+1=2Sn+2(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成一個公差為d的等差數(shù)列.
(Ⅰ)在數(shù)列{dn}中是否存在三項dm,dk,dp(其中m,k,p是等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項;若不存在,說明理由;
(Ⅱ)求證:
1
d1
+
1
d2
+
1
d3
+…+
1
dn
15
16
(n∈N*).

查看答案和解析>>

同步練習冊答案