15.若集合A={-1,1},B={0,1},則集合A∪B的子集個數(shù)為( 。
A.4B.5C.7D.8

分析 若一個集合中有n個元素,則這個集合有2n個子集.

解答 解:∵集合A={-1,1},B={0,1},
∴集合A∪B={-1,0,1},
∴A∪B的子集個數(shù)為23=8.
故選:D.

點(diǎn)評 本題考查并集的子集個數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意并集性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=ax2+bx+3在(-∞,-1]上是增函數(shù),在[-1,+∞)上是減函數(shù),則(  )
A.b>0且a<0B.b=2a<0C.b=2a>0D.b=-2a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|y=lg(x-1)},集合B={y|y=-x2+2},則A∩B等于( 。
A.(1,2)B.(1,2]C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線m,n和平面α,下列推理正確的是( 。
A.$\left.{\begin{array}{l}{m⊥n}\\{n?α}\end{array}}\right\}⇒m⊥α$B.$\left.{\begin{array}{l}{m⊥n}\\{n⊥α}\end{array}}\right\}⇒m∥α$C.$\left.{\begin{array}{l}{m⊥α}\\{n∥α}\end{array}}\right\}⇒m⊥n$D.$\left.{\begin{array}{l}{m∥α}\\{n?α}\end{array}}\right\}⇒m∥n$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,已知四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PB的中點(diǎn).
(Ⅰ)證明:AE⊥平面PAD;
(Ⅱ)若H為PD上的動點(diǎn),EH與平面PAD所成最
大角的正切值為$\sqrt{3}$,求二面角B-AF-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.為了得到函數(shù)y=sin3x-$\sqrt{3}$cos3x的圖象( 。
A.只要將函數(shù)y=2sin3x的圖象向右平移$\frac{π}{3}$個單位
B.只要將函數(shù)y=sin3x的圖象向右平移$\frac{π}{3}$個單位
C.只要將函數(shù)y=2sin3x的圖象向右平移$\frac{π}{9}$個單位
D.只要將函數(shù)y=sin3x的圖象向右平移$\frac{π}{9}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a,b∈R,i是虛數(shù)單位,若a-2bi與1+4i互為共軛復(fù)數(shù),則|a+bi|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)$f(x)=\sqrt{x-1}$,則$f(\frac{x}{2})+f(\frac{4}{x})$的定義域?yàn)椋ā 。?table class="qanwser">A.$[\frac{1}{2},4]$B.[2,4]C.[1,+∞)D.[$\frac{1}{4}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)$f(x)=b{x^3}-\frac{3}{2}(2b+1){x^2}+6x+a(b>0)$.
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)b=1,若方程f(x)=0有且只有一個實(shí)根,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案