6.曲線f(x)=sinx+ex+2在點(diǎn)(0,f(0))處的切線方程為y=2x+3.

分析 欲求在x=0處的切線的方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=0處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率,從而問題解決.

解答 解:∵f(x)=sinx+ex+2,
∴f′(x)=cosx+ex
∴曲線f(x)=sinx+ex+2在點(diǎn)P(0,3)處的切線的斜率為:k=cos0+e0=2,
∴曲線f(x)=sinx+ex+2在點(diǎn)P(0,3)處的切線的方程為:y=2x+3,
故答案為y=2x+3.

點(diǎn)評(píng) 本小題主要考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、直線方程的應(yīng)用等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow{m}$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow{n}$=(sinα,1),$\overrightarrow{m}$與$\overrightarrow{n}$為共線向量,且α∈[-$\frac{π}{2}$,0].
(1)求sinα+cosα的值;             
(2)求$\frac{sin2α}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足a1=$\frac{1}{8}$,an=$\frac{{{a_{n-1}}}}{{1-2{a_{n-1}}}}$(n≥2,n∈N*),設(shè)bn=$\frac{1}{a_n}$,
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)Sn=|b1|+|b2|+…+|bn|(n∈N*),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.命題“?x∈R,ax2-2ax+3>0恒成立”是真命題,則實(shí)數(shù)a的取值范圍是0≤a<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-\frac{1}{2},x<1}\\{{2}^{x},x≥1}\end{array}\right.$,則f(f($\frac{5}{6}$))=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.近日,某公司對(duì)其生產(chǎn)的一款產(chǎn)品進(jìn)行促銷活動(dòng),經(jīng)測算該產(chǎn)品的銷售量P(單位:萬件)與促銷費(fèi)用x(單位:萬元)滿足函數(shù)關(guān)系:p=3-$\frac{2}{x+1}$(其中0≤x≤a,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品件數(shù)為P(單位:萬件)時(shí),還需投入成本10+2P(單位:萬元)(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為(4+$\frac{30}{p}$)元/件,假定生產(chǎn)量與銷售量相等.
(Ⅰ)將該產(chǎn)品的利潤y(單位:萬元)表示為促銷費(fèi)用x(單位:萬元)的函數(shù);
(Ⅱ)促銷費(fèi)用x(單位:萬元)是多少時(shí),該產(chǎn)品的利潤y(單位:萬元)取最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{a}$=(1,-2),|$\overrightarrow$|=2$\sqrt{5}$,且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow$=(2,-4),或(-2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合M={-1,1},N={x|x2-4<0},則下列結(jié)論正確的是( 。
A.N⊆MB.N∩M=∅C.M⊆ND.M∪N=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=sin3x+cos2x-cos2x-sinx的最大值等于( 。
A.$\frac{4}{27}$B.$\frac{5}{27}$C.$\frac{1}{3}$D.$\frac{16}{27}$

查看答案和解析>>

同步練習(xí)冊(cè)答案