9.在△ABC中,D是BC的中點,向量$\overrightarrow{AB}$=a,向量$\overrightarrow{AC}$=b,則向量$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$).(用向量a,b表示)

分析 直接利用向量的加法的平行四邊形法則,求出結(jié)果即可

解答 解:因為D是△ABC的邊BC上的中點,向量$\overrightarrow{AB}$=$\overrightarrow{a}$,向量$\overrightarrow{AC}$=$\overrightarrow$,
所以$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$),
故答案為:$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$)

點評 本題考查向量的四邊形法則的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若a<b<0,則下列不等式成立的是( 。
A.$\frac{1}{a}<\frac{1}$B.$0<\frac{a}<1$C.ab>b2D.$\frac{a}>\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.冪函數(shù)f(x)=(t3-t+1)x3t+1是偶函數(shù),且在(0,1)上單調(diào)遞增,則f(2)=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.三棱錐P-ABC的四個頂點都在球O的球面上,已知PA、PB、PC兩兩垂直,PA=1,PB+PC=4,當三棱錐的體積最大時,球心O到平面ABC的距離是(  )
A.$\frac{\sqrt{6}}{12}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{3}$D.$\frac{3}{2}$-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知0<x<$\frac{π}{2}$,且sin(2x-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{10}$,則sinx+cosx=$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)f(x)=2sinωx(ω>0)在區(qū)間$[{-\frac{π}{6}\;,\;\;\frac{π}{4}}]$上單調(diào)遞增,則ω的最大值為2.且當ω取最大值時f(x)的值域為[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)$f(x)=\left\{\begin{array}{l}{log_2}x\;,\;\;x>0\\{2^3}\;,\;\;x≤0\end{array}\right.$,則$f({f({\frac{1}{2}})})$的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)求點A到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{m}$=(t+1,1),$\overrightarrow{n}$=(t+2,2),若$(\overrightarrow{m}+\overrightarrow{n})⊥(\overrightarrow{m}-\overrightarrow{n})$,則t=(  )
A.0B.-3C.3D.-1

查看答案和解析>>

同步練習(xí)冊答案