函數(shù)f(x)=cos2x+sinx在區(qū)間[-
π
4
,
π
4
]上的最小值是
 
考點(diǎn):三角函數(shù)的最值
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:很容易想到將原函數(shù)解析式變成:f(x)=1-sinx2+sinx,這時(shí)候形式上像二次函數(shù)的形式,所以對(duì)得到的解析式進(jìn)行配方,再根據(jù)sinx在[-
π
4
,
π
4
]
的取值,從而求出原函數(shù)的最小值.
解答: 解:f(x)=1-sinx2+sinx=-(sinx-
1
2
)2+
5
4
;
x∈[-
π
4
,
π
4
]
時(shí),-
2
2
≤sinx≤
2
2
;
∴sinx=-
2
2
時(shí),f(x)最小,最小值為:-(-
2
2
-
1
2
)2+
5
4
=
1-
2
2

故答案是:
1-
2
2
點(diǎn)評(píng):對(duì)所得解析式配方是解決本題的關(guān)鍵,還要注意已知中x的所在區(qū)間.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上.
(1)證明:D1E⊥A1D;
(2)當(dāng)E點(diǎn)為線段AB的中點(diǎn)時(shí),求異面直線D1E與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,0),B(0,1),C(sinθ,cosθ)
(1)若|
AC
|=|
BC
|,求tanθ的值;
(2)若(
OA
+2
OB
)•
OC
=1,其中O為坐標(biāo)原點(diǎn),求sin2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD的底面ABCD是菱形,PA=AD=AC=2,PD=
2
PA,△PCD是以CD為底邊的等腰三角形,且點(diǎn)F為PC的中點(diǎn).
(1)求證:PA∥平面BFD;
(2)求二面角C-BF-D的余弦值;
(3)求三棱錐B-CDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1
x
+2lnx的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-e2x+bx+c,x≤1
a(x21nx-x+1)+1,x>1
,函數(shù)f(x)在x=0處取得極值1.
(I)求實(shí)數(shù)b,c的值;
(Ⅱ)求f(x)在區(qū)間[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式組
4k
k2-1
<0
-
8k2
k2-1
>0
2k2-1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
x2-1
x2+2x+1
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(Ⅰ)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;
(Ⅱ)證明:無(wú)論點(diǎn)E在邊BC的何處,都有PE⊥AF.

查看答案和解析>>

同步練習(xí)冊(cè)答案