【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S5=a5+a6=25.
(1)求{an}的通項(xiàng)公式;
(2)若不等式2Sn+8n+27>(﹣1)nk(an+4)對(duì)所有的正整數(shù)n都成立,求實(shí)數(shù)k的取值范圍.
【答案】
(1)解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=a5+a6=25,
∴ ,
解得a1=﹣1,d=3,
∴{an}的通項(xiàng)公式an=﹣1+(n﹣1)×3=3n﹣4.
(2)解:∵a1=﹣1,d=3,
∴ = .
∵不等式2Sn+8n+27>(﹣1)nk(an+4)對(duì)所有的正整數(shù)n都成立,
∴3n2+3n+27>(﹣1)nk3n,
∴(﹣1)nk<n+ +1對(duì)所有的正整數(shù)n都成立,
當(dāng)n為偶數(shù)時(shí),k<n+ +1,
設(shè)F(n)=n+ +1,
F(n)min=F(4)=4+ = .
∴k< .
當(dāng)n為奇數(shù)時(shí),﹣k<n+ +1,k>﹣(n+ +1),
﹣(n+ +1)≤﹣2 ﹣1=﹣7,
當(dāng)且僅當(dāng)n= ,即n=3時(shí),取等號(hào),
∴實(shí)數(shù)k的取值范圍是(﹣7, ).
【解析】(1)利用等差數(shù)列通項(xiàng)公式和前n項(xiàng)和公式列出方程組,求出首項(xiàng)和公差,由此能求出{an}的通項(xiàng)公式.(2)求出Sn,從而3n2+3n+27>(﹣1)nk3n,由此能求出實(shí)數(shù)k的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)的定義域是(0,+∞),f'(x)為f(x)的導(dǎo)函數(shù),且滿足f(x)<f'(x),則不等式 f(2)的解集是( )
A.(﹣∞,2)∪(1,+∞)
B.(﹣2,1)
C.(﹣∞,﹣1)∪(2,+∞)
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列兩個(gè)命題: 命題p::若在邊長(zhǎng)為1的正方形ABCD內(nèi)任取一點(diǎn)M,則|MA|≤1的概率為 .命題q:設(shè) , 是兩個(gè)非零向量,則“ =| |”是“ 與 共線”的充分不必要條件,那么,下列命題中為真命題的是( )
A.p∧q
B.¬p
C.p∧(¬q)
D.(¬p)∨(q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會(huì)”等五個(gè)社團(tuán),若每名同學(xué)必須參加且只能參加1個(gè)社團(tuán)且每個(gè)社團(tuán)至多兩人參加,則這6個(gè)人中沒(méi)有人參加“演講團(tuán)”的不同參加方法數(shù)為( )
A.3600
B.1080
C.1440
D.2520
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸正方向?yàn)闃O軸,已知曲線C1的參數(shù)方程為 (t為參數(shù)),C2的極坐標(biāo)方程為ρ2(1+sin2θ)=8,C3的極坐標(biāo)方程為θ=α,α∈[0,π),ρ∈R,
(1)若C1與C3的一個(gè)公共點(diǎn)為A(異于O點(diǎn)),且|OA|= ,求α;
(2)若C1與C3的一個(gè)公共點(diǎn)為A(異于O點(diǎn)),C2與C3的一個(gè)公共點(diǎn)為B,求|OA||OB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax,g(x)= +a.
(1)當(dāng)a=2 時(shí),求F(x)=f(x)﹣g(x)在(0,2]的最大值;
(2)討論函數(shù)F(x)=f(x)﹣g(x) 的單調(diào)性;
(3)若f(x)g(x)≤0 在定義域內(nèi)恒成立,求實(shí)數(shù)a的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1(﹣1,0),F(xiàn)2(1,0),曲線C1上任意一點(diǎn)M滿足 ;曲線C2上的點(diǎn)N在y軸的右邊且N到F2的距離與它到y(tǒng)軸的距離的差為1.
(1)求C1 , C2的方程;
(2)過(guò)F1的直線l與C1相交于點(diǎn)A,B,直線AF2 , BF2分別與C2相交于點(diǎn)C,D和E,F(xiàn).求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三棱柱ABC﹣A1B1C1的底面是邊長(zhǎng)為2正三角形,D是A1C1的中點(diǎn),且AA1⊥平面ABC,AA1=3.
(Ⅰ)求證:A1B∥平面B1DC;
(Ⅱ)求二面角D﹣B1C﹣C1的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com