5.設(shè)F1,F(xiàn)2分別為橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左右焦點(diǎn),點(diǎn)P(x,y)在直線y-x-3=0上(x≠-3且$x≠±\sqrt{3}$),直線PF1,PF2的斜率分別為k1、k2,則$\frac{1}{k_2}-\frac{2}{k_1}$的值為( 。
A.1B.$\frac{3}{2}$C.$\sqrt{2}$D.-1

分析 設(shè)P(x0,y0),則y0-x0-3=0F1(-1,0),F(xiàn)2(1,0),k1=$\frac{{y}_{0}}{{x}_{0}+1}$,k2=$\frac{{y}_{0}}{{x}_{0}-1}$,可得$\frac{1}{k_2}-\frac{2}{k_1}$=$\frac{-{x}_{0}-3}{{y}_{0}}$的值.

解答 解:設(shè)P(x0,y0),F(xiàn)1(-1,0),F(xiàn)2(1,0),直線PF1,PF2的斜率分別為k1、k2
k1=$\frac{{y}_{0}}{{x}_{0}+1}$,k2=$\frac{{y}_{0}}{{x}_{0}-1}$,∴則$\frac{1}{k_2}-\frac{2}{k_1}$=$\frac{-{x}_{0}-3}{{y}_{0}}$,又因?yàn)閥0-x0-3=0,∴則$\frac{1}{k_2}-\frac{2}{k_1}$=$\frac{-{x}_{0}-3}{{y}_{0}}$=-1.
故選:D

點(diǎn)評 本題考查了直線的斜率公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),橢圓上任意一個動點(diǎn)M到左焦點(diǎn)F1的距離的最大值 為$\sqrt{2}$+1
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線L的斜率為k,且過左焦點(diǎn)F1,與橢圓C相交于P、Q兩點(diǎn),若△PQF2的面積為$\frac{\sqrt{10}}{3}$,試求k的值及直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求25除4•6n+5(n+1)的余數(shù)(n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}ax+b,x<0\\{2^x},x≥0\end{array}\right.$,且f(-2)=3,f(-1)=f(1).
(Ⅰ)求f(x)的解析式,并求f(f(-2))的值;
(Ⅱ)請在給定的直角坐標(biāo)系內(nèi),利用“描點(diǎn)法”畫出y=f(x)的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x>-1,則$x+\frac{4}{x+1}$的最小值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知lnx+1≤x(x>0),則$\frac{{{x^2}-1nx+x}}{x}(x>0)$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在△ABC中,點(diǎn)O是BC的中點(diǎn),過點(diǎn)O的直線分別交直線AB、AC于不同的兩點(diǎn)M、N,若$\overrightarrow{AM}=m\overrightarrow{AB}$,$\overrightarrow{AN}=n\overrightarrow{AC}({mn>0})$,則m+n的取值范圍為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.不等式22x-1<2的解集是( 。
A.{x|x<0}B.{x|x>1}C.{x|x<2}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,$f(x)={(\frac{1}{3})^x}$
(1)求函數(shù)f(x)的解析式;
(2)直接寫出單調(diào)區(qū)間,并計算f(log32+1)的值.

查看答案和解析>>

同步練習(xí)冊答案