在(1+x)6-(1+x)5的展開式中,含x3項(xiàng)的系數(shù)是
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:由題意可得,含x3項(xiàng)的系數(shù)為
C
3
6
-
C
3
5
,計(jì)算求得結(jié)果.
解答: 解:在(1+x)6-(1+x)5的展開式中,含x3項(xiàng)的系數(shù)為
C
3
6
-
C
3
5
=20-10=10,
故答案為:10.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,求展開式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),當(dāng)x1≤x2時(shí),f(x1)≤f(x2).當(dāng)x∈[0,1]時(shí),2f(
x
5
)=f(x),f(x)=1-f(1-x),則f(-
150
2014
)+f(-
151
2014
)+…+f(-
170
2014
)+f(-
171
2014
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=cos(ωx+
π
6
)(ω∈N*)的一個(gè)對(duì)稱中心是(
π
6
,0),則ω的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),若以其焦點(diǎn)為圓心,半實(shí)軸長(zhǎng)為半徑的圓與其漸近線相切,則其漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),Q為圓C:(x+2)2+(y-3)2=4上一個(gè)動(dòng)點(diǎn),點(diǎn)P到直線l:x=-1距離為d,則|PQ|+d的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知sinA:sinB:sinC=1:
2
5
,則最大角等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)2<x<3,則ex與ln10x的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF1的中點(diǎn)在y軸上,若∠PF1F2=30°,則橢圓C的離心率為( 。
A、
3
3
B、
3
6
C、
1
3
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩焦點(diǎn)為F1,F(xiàn)2,虛軸端點(diǎn)為B1,B2,雙曲線的離心率為e1,若橢圓以F1,F(xiàn)2為長(zhǎng)軸,以B1,B2為短軸,橢圓的離心率為e2,則e1e2=( 。
A、2
B、1
C、
2
2
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案