某公司準備進行兩種組合投資,穩(wěn)健型組合投資是由每份金融投資20萬元,房地產(chǎn)投資30萬元組成;進取型組合投資是由每份金融投資40萬元,房地產(chǎn)投資30萬元組成.已知每份穩(wěn)健型組合投資每年可獲利10萬元,每份進取型組合投資每年可獲利15萬元.若可作投資用的資金中,金融投資不超過160萬元,房地產(chǎn)投資不超過180萬元,求這兩種組合投資應注入多少份,才能使一年獲利總額最多?
考點:函數(shù)模型的選擇與應用
專題:應用題,不等式的解法及應用
分析:設穩(wěn)健型組合投資與進取型組合投資分別注入x,y份,則
20x+40y≤160
30x+30y≤180
x≥0,y≥0
,目標函數(shù)z=10x+15y,求出交點坐標,即可得出結論.
解答: 解:設穩(wěn)健型組合投資與進取型組合投資分別注入x,y份,
20x+40y≤160
30x+30y≤180
x≥0,y≥0
,目標函數(shù)z=10x+15y,
20x+40y=160
30x+30y=180
,可得x=4,y=2,
函數(shù)在(4,2)處取得最大值,
∴得最優(yōu)解為x=4,y=2,∴zmax=70萬元.
點評:本題考查線性規(guī)劃知識的運用,考查學生的計算能力,建立不等式組是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一艘輪船在航行中燃料費和它的速度的立方成正比,k為比例常數(shù).已知速度為每小時10千米時,燃料費是每小時6元,而其它與速度無關的費用是每小時96元,問輪船的速度是多少時,航行1千米所需的費用總和為最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在原點,對稱軸為坐標軸,且過(0,1),(1,
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點S(0,-
1
3
)且斜率為k的動直線l交橢圓C于A,B兩點,在y軸上是否存在定點D,使以AB為直徑的圓恒過這個點?若存在,求出D的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AC=2,BC=1,cosC=
3
4

(1)求AB的值
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+mx在(0,1)上是增函數(shù).
(Ⅰ)實數(shù)m的取值集合為A,當m取值集合A中的最小值時,定義數(shù)列{an}:滿足a1=3,且an>0,an+1=
-3f′(an)+9
(n∈N*),求數(shù)列{an}的通項公式;
(Ⅱ)根據(jù)(Ⅰ)結論,若b2=
(sn-2)•3n
4nan
(n∈N*),數(shù)列{bn}的前n項和為Sn,求證:Sn
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式x>ax2+
3
2
的解集為{x|2<x<
m
},求不等式ax2-(5a+1)x+ma>0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知幾何體由正方體和直三棱柱組成,其三視圖和直觀圖(單位:cm)如圖所示.設兩條異面直線A1Q和PD所成的角為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

首項為1的數(shù)列{an}滿足an+1-an=2,n∈N*
(1)判斷數(shù)列{an}是否為等差數(shù)列,并求出通項公式an;      
(2)記數(shù)列{an}的前n項和為Sn,求Sn<100的最大n值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,過F1作傾斜角為30°的直線與橢圓的一個交點為P,且PF2⊥x軸,則此橢圓的離心率為
 

查看答案和解析>>

同步練習冊答案