【題目】某項針對我國《義務教育數(shù)學課程標準》的研究中,列出各個學段每個主題所包含的條目數(shù)(如下表),下圖是統(tǒng)計表的條目數(shù)轉化為百分比,按各學段繪制的等高條形圖,由圖表分析得出以下四個結論,其中錯誤的是( )
A.除了“綜合實踐”外,其它三個領域的條目數(shù)都隨著學段的升高而增加,尤其“圖象幾何” 在第三學段增加較多,約是第二學段的倍.
B.所有主題中,三個學段的總和“圖形幾何”條目數(shù)最多,占50%,綜合實踐最少,約占4% .
C.第一、二學段“數(shù)與代數(shù)”條目數(shù)最多,第三學段“圖形幾何”條目數(shù)最多.
D.“數(shù)與代數(shù)”條目數(shù)雖然隨著學段的增長而增長,而其百分比卻一直在減少.“圖形幾何”條目數(shù),百分比都隨學段的增長而增長.
【答案】D
【解析】
根據統(tǒng)計圖表,結合每個選項即可容易求得結果.
結合統(tǒng)計圖表可知,
除了“綜合實踐”外,其它三個領域的條目數(shù)都隨著學段的升高而增加,
尤其“圖象幾何” 在第三學段增加較多,約是第二學段的倍,故正確;
所有主題中,三個學段的總和“圖形幾何”條目數(shù)最多,占50%,
綜合實踐最少,約占4% ,故正確;
第一、二學段“數(shù)與代數(shù)”條目數(shù)最多,第三學段“圖形幾何”條目數(shù)最多,故正確;
對中,顯然“數(shù)與代數(shù)”條目數(shù)雖然隨著學段的增長而增長,
而其百分比卻一直在減少;而“圖形幾何”條目數(shù),
百分比隨著學段數(shù)先減后增,故錯誤;
故選:D
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓的右焦點、右頂點分別為F,A,過原點的直線與橢圓C交于點P、Q(點P在第一象限內),連結PA,QF.若,的面積是面積的3倍.
(1)求橢圓C的標準方程;
(2)已知M為線段PA的中點,連結QA,QM.
①求證:Q,F,M三點共線;
②記直線QP,QM,QA的斜率分別為,,,若,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和滿足(,為常數(shù),,且),,,若存在正整數(shù),使得成立;數(shù)列是首項為2,公差為的等差數(shù)列,為其前項和,則以下結論正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)設,數(shù)列的前項和為,求;
(3)設,問:是否存在非零整數(shù),使數(shù)列為遞增數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】回文數(shù)指從左向右讀與從右向左讀都一樣的正整數(shù),如22,343,1221,94249等.顯然兩位回文數(shù)有9個,即11,22,33,99;三位回文數(shù)有90個,即101,121,131,…,191,202,…,999.則四位回文數(shù)有______個,位回文數(shù)有______個.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的參數(shù)方程與直線的普通方程;
(2)設點過為曲線上的動點,點和點為直線上的點,且滿足為等邊三角形,求邊長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點的曲線的方程為.
(Ⅰ)求曲線的標準方程:
(Ⅱ)已知點,為直線上任意一點,過作的垂線交曲線于點,.
(。┳C明:平分線段(其中為坐標原點);
(ⅱ)求最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)x2+ax+lnx(a∈R)
(1)討論函數(shù)f(x)的單調性;
(2)若f(x)存在兩個極值點x1,x2且|x1﹣x2|,求|f(x1)﹣f(x2)|的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com