18.在高臺跳水中,t s時運動員相對水面的高度(單位:m)是h(t)=-4.9t2+6.5t+10,則t=2s時的速度是( 。
A.13.1m/sB.-13.1m/sC.-26.1m/sD.26.1m/s

分析 根據(jù)導(dǎo)數(shù)的物理意義可知,h(t)函數(shù)的導(dǎo)數(shù)即是t時刻的瞬時速度.求導(dǎo)數(shù)即可.

解答 解:∵h(yuǎn)(t)=-4.9t2+6.5t+10,
∴h'(t)=-4.9×2t+6.5=-9.8t+6.5,
∴在t=2s時的瞬時速度為h'(2)=-9.8×2+6.5=-13.1m/s,
故選B.

點評 本題主要考查導(dǎo)數(shù)的計算,利用導(dǎo)數(shù)的物理意義即可求瞬時速度,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.邊長為2的等邊三角形繞其一邊所在的直線旋轉(zhuǎn)一周得到一個幾何體,該幾何體的體積是2π,該幾何體的表面積是4$\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=cosx,x∈($\frac{π}{2}$,3π),若方程f(x)=m有三個從小到大排列的根x1,x2,x3,且x22=x1x3,則m的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=$\sqrt{2}$.
(1)證明:DE⊥平面ACD;
(2)求棱錐C-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=$\sqrt{2sinx+\sqrt{3}}$的定義域是( 。
A.[$\frac{π}{6}$+2kπ,$\frac{5π}{6}$+2kπ],k∈ZB.[-$\frac{π}{6}$+2kπ,$\frac{7π}{6}$+2kπ],k∈Z
C.[$\frac{π}{3}$+2kπ,$\frac{2π}{3}$+2kπ],k∈ZD.[-$\frac{π}{3}$+2kπ,$\frac{4π}{3}$+2kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ln(x+3)+ax+2(a∈R)在點x=-2處取得極值.
(1)求實數(shù)a的值;
(2)若函數(shù)g(x)=f(x)+kx(k∈R)在區(qū)間(-3,2]上是增函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某中學(xué)生心理咨詢中心服務(wù)電話接通率為$\frac{3}{4}$,某班3名同學(xué)商定明天分別就同一問題詢問該服務(wù)中心,且每人只撥打一次,
求(1)他們中成功咨詢的人數(shù)為X的分布列及期望;
(2)至少一人撥通電話的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)n?N+,則5${C}_{n}^{1}$+52${C}_{n}^{2}$+53${C}_{n}^{3}$+…+5n${C}_{n}^{n}$除以7的余數(shù)為( 。
A.0或5B.1或3C.4或6D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=log3x+$\frac{1}{{{{log}_3}x}}$-1的值域是( 。
A.(-∞,-3)∪(1,+∞)B.(-∞,-3]∪[1,+∞)C.[1,+∞)D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊答案