【題目】在直角坐標系中,以為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,曲線的極坐標方程為,曲線的極坐標方程為

(Ⅰ)求的直角坐標方程;

(Ⅱ)若的交于點,交于兩點,求的面積.

【答案】(Ⅰ)的普通方程為,曲線的普通方程

(Ⅱ)

【解析】

(Ⅰ)由曲線C1的極坐標方程能求出曲線C1的普通方程,由曲線C2的極坐標方程能求出曲線C2的普通方程.

(Ⅱ)由曲線C3的極坐標方程求出曲線C3的普通方程,聯(lián)立C1C2x2﹣2x+1=0,解得點P坐標(1,4),從而點PC3的距離d.設(shè)A(ρ1,θ1),B(ρ2,θ2).將代入C2,得,求出|AB|=|ρ1﹣ρ2|,由此能求出△PAB的面積.

(Ⅰ)曲線的極坐標方程為,

根據(jù)題意,曲線的普通方程為

曲線的極坐標方程為,

曲線的普通方程為,即

(Ⅱ)曲線的極坐標方程為,

曲線的普通方程為

聯(lián)立:

,解得點P的坐標

點P到的距離.

設(shè)代入,得

,

,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)求函數(shù)的極值點;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)試討論的單調(diào)性;

(Ⅱ)記的零點為,的極小值點為,當時,求證.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程是為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,且直線與曲線交于兩點

(1)求曲線的普通方程及直線恒過的定點的坐標;

(2)在(1)的條件下,若,求直線的普通方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先后拋擲一枚骰子兩次,將出現(xiàn)的點數(shù)分別記為.

1)設(shè)向量,,求的概率;

2)求在點數(shù)之和不大于5的條件下,中至少有一個為2的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是2018年第一季度五省GDP情況圖,則下列描述中不正確的是( )

A. 與去年同期相比2018年第一季度五個省的GDP總量均實現(xiàn)了增長

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP總量不超過4000億元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線的焦點且斜率為1的直線與拋物線交于、兩點,且.

1)求拋物線的方程;

2)點是拋物線上異于、的任意一點,直線、與拋物線的準線分別交于點、,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年寒假是特殊的寒假,因為抗擊疫情全體學生只能在家進行網(wǎng)上在線學習,為了研究學生在網(wǎng)上學習的情況,某學校在網(wǎng)上隨機抽取120名學生對線上教育進行調(diào)查,其中男生與女生的人數(shù)之比為1113,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.

1)完成列聯(lián)表,并回答能否有99%的把握認為對“線上教育是否滿意與性別有關(guān)”;

滿意

不滿意

總計

男生

20

女生

15

合計

120

2)從被調(diào)查的對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取3名學生,作線上學習的經(jīng)驗介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足:(1);(2);(3)時,.大小關(guān)系

A. B.

C. D.

查看答案和解析>>

同步練習冊答案