15.求函數(shù)y=log2(x2+2x)的定義域,值域,單調(diào)遞增區(qū)間.

分析 令真數(shù)為正,可得函數(shù)的定義域,根據(jù)真數(shù)的范圍,可得函數(shù)的值域,根據(jù)復(fù)合函數(shù)“同增異減”的原則,可得函數(shù)的單調(diào)區(qū)間.

解答 解:由x2+2x>0得:x>0,或x<-2,
故函數(shù)y=log2(x2+2x)的定義域為{x|x<-2,或x>0}
此時x2+2x>0,
故函數(shù)y=log2(x2+2x)的值域為R,
當(dāng)x>0時,t=x2+2x為增函數(shù),函數(shù)y=log2t為增函數(shù),
故函數(shù)y=log2(x2+2x)的單調(diào)遞增區(qū)間為(0,+∞)

點評 本題考查的知識點是對數(shù)函數(shù)的圖象和性質(zhì),復(fù)合函數(shù)的單調(diào)性,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.sin(-945°)的值為(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{3}}{2}$D..$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,2a1+1=a2
(Ⅰ) 求數(shù)列{an}的通項公式;
(Ⅱ) 若數(shù)列{bn}滿足an=log2(bn-n),求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.參數(shù)方程$\left\{\begin{array}{l}x=cosθ\\ y=1+cosθ\end{array}\right.$(θ∈R)化為普通方程是x2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知曲線C上任意一點P到點F(1,0)的距離比到直線x=-3的距離小2.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)若斜率k>2的直線l過點F且交曲線C為A、B兩點,當(dāng)線段AB的中點M到直線l′:5x+12y+a=0(a>-5)的距離為$\frac{1}{13}$時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}的公差d>0,且滿足:a3a6=55,a2+a7=16,數(shù)列{bn}滿足:${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項的和為Tn
(1)求數(shù)列{an}的通項公式
(2)求Tn及Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x、y之間的一組數(shù)據(jù)如表,則y與x的線性回歸方程$\stackrel{∧}{y}$=bx+a必過點( 。
x0123
y1357
A.(1.5,3)B.(1.5,4)C.(1.7,4)D.(1.7,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題(a,b表示直線,α表示平面)中正確的是( 。
A.$\left.{\frac{a||b}{b⊥α}}\right\}⇒a⊥α$B.$\left.{\frac{a||b}{b?α}}\right\}⇒a||α$C.$\left.\begin{array}{l}a⊥b\\ b∥α\end{array}\right\}⇒a⊥α$D.$\left.\begin{array}{l}a⊥α\\ a⊥b\end{array}\right\}⇒b?α$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知A,B是球O的球面上兩點,∠AOB=90°,C為該球面上的動點,若三棱錐O-ABC體積的最大值為36,則球O的體積為( 。
A.72πB.144πC.288πD.576π

查看答案和解析>>

同步練習(xí)冊答案