【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機(jī)構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解,兩個少數(shù)民族班學(xué)生咀嚼檳榔的情況,分別從這兩個班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(1)從班的樣本數(shù)據(jù)中隨機(jī)抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機(jī)抽取一個不超過21的數(shù)據(jù)記為,求的概率;
(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學(xué)中隨機(jī)抽取3人,求被抽到班同學(xué)人數(shù)的分布列和數(shù)學(xué)期望.
【答案】(1) (2)見解析
【解析】
(1)由題可得:從班和班的樣本數(shù)據(jù)中各隨機(jī)抽取一個共有種不同情況,列出的情況有,,三種,問題得解。
(2)的可能取值為1,2,3.分別求出各種取值的概率即可列出分布列,再由數(shù)學(xué)期望公式求解即可。
(1)班的樣本數(shù)據(jù)中不超過19的數(shù)據(jù)有3個,
班的樣本數(shù)據(jù)中不超過21的數(shù)據(jù)也有3個,
從班和班的樣本數(shù)據(jù)中各隨機(jī)抽取一個共有種不同情況.
其中的情況有,,三種,
故的概率.
(2)因為所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學(xué)中,班有2人,班有3人,共有5人,設(shè)抽到班同學(xué)的人數(shù)為,
∴的可能取值為1,2,3.
,,.
∴的分布列為:
| 1 | 2 | 3 |
|
|
|
|
數(shù)學(xué)期望為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的上頂點(diǎn)為A,右頂點(diǎn)為B.已知(O為原點(diǎn)).
(1)求橢圓的離心率;
(2)設(shè)點(diǎn),直線與橢圓交于兩個不同點(diǎn)M,N,直線AM與x軸交于點(diǎn)E,直線AN與x軸交于點(diǎn)F,若.求證:直線l經(jīng)過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某賽季,甲、乙兩名籃球運(yùn)動員都參加了場比賽,他們所有比賽得分的情況如下:
甲:;
乙: .
(1)求甲、乙兩名運(yùn)動員得分的中位數(shù).
(2)分別求甲、乙兩名運(yùn)動員得分的平均數(shù)、方差,你認(rèn)為哪位運(yùn)動員的成績更穩(wěn)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點(diǎn),對稱軸為坐標(biāo)軸的雙曲線與圓:有公共點(diǎn),且圓在點(diǎn)處的切線與雙曲線的一條漸近線平行,則該雙曲線的實軸長為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】任意實數(shù),,定義,設(shè)函數(shù),數(shù)列是公比大于0的等比數(shù)列,且,,則____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為。我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時可以直接應(yīng)用。已知,直線與橢圓有且只有一個公共點(diǎn).
(1)求的值;
(2)設(shè)為坐標(biāo)原點(diǎn),過橢圓上的兩點(diǎn)、分別作該橢圓的兩條切線、,且與交于點(diǎn)。當(dāng)變化時,求面積的最大值;
(3)在(2)的條件下,經(jīng)過點(diǎn)作直線與該橢圓交于、兩點(diǎn),在線段上存在點(diǎn),使成立,試問:點(diǎn)是否在直線上,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百一十五里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還其大意為:“有一個人走315里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了 6天后到達(dá)目的地. ”則該人最后一天走的路程為( )
A.20里B.10里C.5 里D.2.5 里
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com