給出下列四個(gè)命題:
①若函數(shù)f(x)=a(x3-x)在區(qū)間(-
3
3
3
3
)為減函數(shù),則a>0;
②函數(shù)f(x)=lg(ax+1)的定義域是{x|x>-
1
a
}
;
③當(dāng)x>0且x≠1時(shí),有lnx+
1
lnx
≥2
;
④函數(shù)y=x2,y=(
1
2
)x,y=x5+1,y=x,y=ax(a>1)
中,冪函數(shù)有2個(gè).
所有正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4
分析:對(duì)于①若函數(shù)f(x)=a(x3-x)在區(qū)間(-
3
3
,
3
3
)為減函數(shù),則f′(x)<0在區(qū)間(-
3
3
,
3
3
)上恒成立,即可求得a的范圍;對(duì)于②當(dāng)a>0時(shí),函數(shù)f(x)=lg(ax+1)的定義域是{x|x>-
1
a
}
;對(duì)于③當(dāng)x>0且x≠1時(shí),因lnx不一定大于0,故不一定有lnx+
1
lnx
≥2
;對(duì)于④函數(shù)中,冪函數(shù)有y=x2,y=x,共2個(gè).
解答:解:①若函數(shù)f(x)=a(x3-x)在區(qū)間(-
3
3
,
3
3
)為減函數(shù),則f′(x)<0在區(qū)間(-
3
3
,
3
3
)上恒成立,即:a(3x2-1)<0⇒a>0;故①正確;
②當(dāng)a>0時(shí),函數(shù)f(x)=lg(ax+1)的定義域是{x|x>-
1
a
}
;故其錯(cuò);
③當(dāng)x>0且x≠1時(shí),因lnx不一定大于0,故不一定有lnx+
1
lnx
≥2
;故③錯(cuò);
④函數(shù)y=x2,y=(
1
2
)x,y=x5+1,y=x,y=ax(a>1)
中,冪函數(shù)有y=x2,y=x,共2個(gè).故其正確.
所有正確命題的個(gè)數(shù)是2.
故選B.
點(diǎn)評(píng):本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)恒成立問題、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個(gè)兩兩不重合的平面,給出下列四個(gè)命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號(hào)有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時(shí),函數(shù)的值域?yàn)閇3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號(hào)是
③④⑤
③④⑤
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長(zhǎng)為2,銳角為60°的菱形ABCD沿較短對(duì)角線BD折成二面角A-BD-C,點(diǎn)E,F(xiàn)分別為AC,BD的中點(diǎn),給出下列四個(gè)命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時(shí),AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號(hào)全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題,其中正確的命題的個(gè)數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對(duì)稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號(hào)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案