【題目】已知橢圓過點(diǎn),且橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)斜率為的直線交橢圓,兩點(diǎn),且.若直線上存在點(diǎn)P,使得是以為頂角的等腰直角三角形,求直線的方程.

【答案】(Ⅰ) (Ⅱ) y=x-1

【解析】

(Ⅰ)由橢圓C1(ab>0)過點(diǎn)A(0,1),且橢圓的離心率為,列方程組求出ab,由此能求出橢圓C的方程.

(Ⅱ)設(shè)直線l的方程為yx+mP(3,yP),由,得4x2+6mx+3m2﹣3=0,利用根的判別式、韋達(dá)定理、中點(diǎn)坐標(biāo)公式,結(jié)合已知條件能求出直線l的方程.

(Ⅰ)由題意得

解得

所以橢圓的方程為

(Ⅱ)設(shè)直線l的方程為y=x+m,

.

,得

,

因?yàn)?/span>是以為頂角的等腰直角三角形,

所以平行于軸.

的垂線,則垂足為線段的中點(diǎn).

設(shè)點(diǎn)的坐標(biāo)為,則

由方程組解得,即

,

所以直線的方程為y=x-1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,A(0,1),AB邊上的高CD所在直線的方程為x2y40,AC邊上的中線BE所在直線的方程為2xy30.

(1)求直線AB的方程;

(2)求直線BC的方程;

(3)BDE的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué)。高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班中各隨機(jī)抽取名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”?

(2)現(xiàn)從上述樣本“成績不優(yōu)秀”的學(xué)生中,抽取3人進(jìn)行考核,記“成績不優(yōu)秀”的乙班人數(shù)為,求的分布列和期望.

參考公式

臨界值表

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 如圖所示在四邊形ABCD,∠D=2∠B,AD=1, CD=3,cos B.

(1)求△ACD的面積;

(2)BC,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在三棱錐ABCD中,CACB,DADB.作BECDE為垂足,作AHBEH.求證:AH⊥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題pk2﹣8k﹣20≤0,命題q:方程1表示焦點(diǎn)在x軸上的雙曲線.

(1)命題q為真命題,求實(shí)數(shù)k的取值范圍;

(2)若命題“pq”為真,命題“pq”為假,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn)P是曲線上的動(dòng)點(diǎn),過點(diǎn)P分別向圓N引切線為切點(diǎn))

1)若,求切線的方程;

2)若切線分別交y軸于點(diǎn),點(diǎn)P的橫坐標(biāo)大于2,求的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)在x軸上,中心在坐標(biāo)原點(diǎn),離心率,橢圓上的點(diǎn)到左焦點(diǎn)的距離的最大值為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過橢圓的右焦點(diǎn)F作與坐標(biāo)軸不垂直的直線l,交橢圓于AB兩點(diǎn),設(shè)點(diǎn)是線段OF上的一個(gè)動(dòng)點(diǎn),且,求m的取值范圍;

3)設(shè)點(diǎn)C是點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn),在x軸上是否存在一個(gè)定點(diǎn)N,使得C、BN三點(diǎn)共線?若存在,求出定點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)平面上點(diǎn)對(duì)應(yīng)的復(fù)數(shù) 為虛數(shù)單位)滿足,點(diǎn)的軌跡方程為曲線. 雙曲線:與曲線有共同焦點(diǎn),傾斜角為的直線與雙曲線的兩條漸近線的交點(diǎn)是、,為坐標(biāo)原點(diǎn).

(1)求點(diǎn)的軌跡方程

(2)求直線的方程;

(3)設(shè)PQR三個(gè)頂點(diǎn)在曲線上,求證:當(dāng)PQR重心時(shí),PQR的面積是定值.

查看答案和解析>>

同步練習(xí)冊答案