已知點P(2,-1)在直線l:ax+y-b=0上的射影是點Q(-2,3),則實數(shù)a、b的值依次是( 。
A、-1,5B、-1,-5
C、1,5D、1,-5
考點:與直線關(guān)于點、直線對稱的直線方程
專題:直線與圓
分析:根據(jù)點在直線上的射影點的坐標建立方程關(guān)系即可得到結(jié)論.
解答: 解:∵點P(2,-1)在直線l:ax+y-b=0上的射影是點Q(-2,3),
∴PQ⊥l,
則PQ的斜率k=
3-(-1)
-2-2
=
4
-4
=-1
,
即直線ax+y-b=0的斜率-a=1,即a=-1,
同時點Q在直線l:ax+y-b=0上,
∴-2a+3-b=0,
即b=3-2a=3+2=5,
故a、b的值依次是-1,5,
故選:A.
點評:本題主要考查直線垂直的應(yīng)用,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三個向量
a
,
b
c
兩兩所夾的角都為120°,且|
a
|=1,|
b
|=2,|
c
|=3,則向量
a
+
b
與向量
c
的夾角θ的值為( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-2,1),|
b
|=|
a
|,且
a
b
互相垂直,則
b
的坐標是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aex-
1
2
x2
(1)若f(x)在R上為增函數(shù),求a的取值范圍;
(2)若a=1,求證:x>0時,f(x)>1+x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OP
=(2cos(
π
2
+x),-1),
OQ
=(-sin(
π
2
-x),cos2x),f(x)=
OP
.
OQ
.若a,b,c分別是銳角△ABC中角A,B,C的對邊,且滿足f(A)=1,b+c=5+3
2
.a(chǎn)=
13
,則△ABC的面積為
 
.•

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程log2x+x=0的解所在的區(qū)間為( 。
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓的中心在坐標原點,F(xiàn)為左焦點,A,B分別為長軸和短軸上的一個頂點,當FB⊥AB時,此類橢圓稱為“黃金橢圓”.類比“黃金橢圓”,可推出“黃金雙曲線”的離心率為( 。
A、
5
-1
2
B、
5
+1
2
C、
3
-1
2
D、
3
+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)+x是偶函數(shù),且f(2)=3,則f(-2)=( 。
A、-7B、7C、-5D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以3、4、5為邊長的直角三角形,各邊分別增加x(x>0)個單位,得到的三角形一定是( 。
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、銳角或鈍角三角形

查看答案和解析>>

同步練習(xí)冊答案